
www.larissa.network | www.silos3.com

S3 COMPATIBLE DISTRIBUTED
STORAGE SYSTEM

Sep 02, 2024

Version - 1.0.0

www.larissa.network | www.silos3.com

Introduction:
Embracing Decentralized Storage

1

The internet is a vast network of interconnected devices that is largely
decentralized in nature. However, the storage of its vast data is often in
the hands of a few large tech entities. Myriad challenges, including
significant data breaches, periods of outage, high storage costs, and
the necessity to rapidly scale infrastructure to meet the growing
demand for quicker and larger data access, confront these entities.

In response, decentralized storage solutions are a unique and
innovative solution to these challenges. In contrast to centralised data
centres, they provide improved security, privacy, cost efficiency, and
performance, which are in close alignment with the decentralized
architecture of the internet.

The urgency of such solutions is underscored by recent trends: the
volume of data is increasing at unprecedented rates, and data
intrusions have surged. Global data is anticipated to surpass 181
zettabytes by 2025 (Edge Delta). The decentralized storage market is
expected to experience substantial growth, which is being driven by
the demand for more efficient data management solutions and the rise
in data generation (Edge Delta).

In comparison to conventional storage methods, decentralized
systems not only enhance the security and privacy of data but also
reduce costs. The design of these systems is centred on the
optimization of a variety of parameters, including cost efficiency,
trustworthiness, capacity, and speed, to ensure that they can adapt to
the changing requirements of users and industries.

A decentralized storage system that is globally scalable and utilises
encryption and sharding to improve data security and distribution is
proposed in this paper, SILO Network. Our methodology entails the
integration of a modular system architecture that incorporates a
variety of components to provide secure, efficient, and cost-effective
data storage solutions.

In the subsequent chapters, we will explore the SILO Network's design,
framework implementation, operational dynamics, future
developments, and the computational models that underpin our
technology. This will establish the foundation for a comprehensive
discussion on the transformative potential of decentralized storage.

www.larissa.network | www.silos3.com

Design Constraints of SILO2

A precise comprehension of the specific requirements that orient its
development is necessary when designing a decentralized storage
system such as SILO. The design space is vast; however, the focus can
be considerably narrowed by establishing a few critical constraints,
which ensures that the system is in alignment with specific product
and market fit objectives.

These constraints are essential for SILO in order to create a system
that is as universally applicable as feasible within the constraints of our
design parameters. This method guarantees that each component of
SILO—including security and scalability—is specifically designed to
satisfy these predetermined criteria.

Security and Privacy in SILO2.1
Regardless of whether the object storage platform is centralised or
decentralized, it is crucial to prioritise the security and privacy of
stored data. Nevertheless, decentralized systems such as SILO
encounter further complexities as a result of the inherently
untrustworthy nature of the nodes involved. Decentralized storage
systems, unlike centralised systems, cannot depend on conventional
security mechanisms like firewalls and DMZs. Instead, they must be
constructed with security and privacy as fundamental components.
This involves the implementation of end-to-end encryption and the
improvement of security at all levels of the system.

Moreover, adherence to diverse regulatory systems is essential. For
example, the processing of data must adhere to the Health Insurance
Portability and Accountability Act (HIPAA) in the United States and the
General Data Protection Regulation (GDPR) in Europe. These
regulations impose strict criteria for safeguarding data. Furthermore,
international clients may want guarantees that their data storage
options minimise vulnerability to U.S. jurisdiction as a result of
geopolitical anxieties.

In order to cultivate trust, clients must have the ability to authenticate
that the SILO software is resilient against possible security
vulnerabilities, both anticipated and unforeseen, and satisfies all of
their specifications. We provide transparency and guarantee users that
the system functions as intended, upholding the highest levels of
security and privacy.

www.larissa.network | www.silos3.com

Design Constraints of SILO2
Decentralisation in application design means that no one entity is
responsible for operating or bearing the whole expense of running the
service, and no individual entity has the power to disrupt the service
for others. This concept is especially attractive for minimising
infrastructure expenses, such as maintenance, utilities, and bandwidth,
by using unused resources at the periphery of the network.

During the development of the SILO decentralized storage network, we
have discovered a significant amount of unused resources among
several smaller operators. While these resources, whether they pertain
to cost-effective power or cooling solutions, may not be enough on
their own to sustain a large-scale data centre, they may make a
substantial contribution to a decentralized network. For example, a
small company or a household using Network Attached Storage (NAS)
may have the capability to accommodate a certain number of drives.
Together, these modest companies may provide a strong, economical,
and widely spread storage solution.

Our dedication to decentralisation is driven by the goal of providing an
alternative to the prevailing centralised storage providers, therefore
reducing the dangers associated with relying on a single institution to
handle a large amount of global data. These risks include any
alterations in service or policy that might jeopardize data privacy or the
sustainability of the service.

Decentralisation enables the establishment of a storage network that
remains functional and accessible even in the event of SILO's cessation
of activities, guaranteeing the continuity and accessibility of data. This
strategy not only tackles the constraints and hazards that are naturally
present in centralised systems, but it also caters to a wide range of
storage requirements, from long-term storage solutions to content
delivery networks (CDNs), without the need for different designs that
centralised systems need.

2.2 Embracing Decentralisation

2.3 Marketplace Dynamics and
Economics of Decentralized Storage
The market for public cloud computing, namely cloud storage, has
shown significant economic growth, increasing from $186.4 billion in
2018 to an estimated $302.5 billion by 2021. This paradigm provides
customers with the option to easily adjust the size and capacity of
their operations, while also reducing expenses by removing the
substantial fixed expenditures often involved with maintaining physical

www.larissa.network | www.silos3.com

Design Constraints of SILO2 data centres.

The market for public cloud computing, namely cloud storage, has
shown significant economic growth, increasing from $186.4 billion in
2018 to an estimated $302.5 billion by 2021. This paradigm provides
customers with the option to easily adjust the size and capacity of
their operations, while also reducing expenses by removing the
substantial fixed expenditures often involved with maintaining physical
data centres.

Public cloud storage, although advantageous, inherently results in
market concentration because of the significant initial expenditures
and economies of scale that benefit just a few major suppliers. This
concentration restricts competition and consolidates control over
extensive data stores.

SILO, a kind of decentralized storage, offers an appealing option by
dispersing data over a network of autonomous nodes. This approach
helps to save expenses and enhance control over data ownership. In
order for SILO to successfully compete, it must provide better
economic advantages, not just in terms of price for storage and
bandwidth, but also in terms of the complete value proposition, which
includes security, performance, and dependability.

End Users: Offering competitive features of public cloud storage
such as scalability and no upfront costs, while providing better
value and security.

Storage Node Operators: Making it economically viable to
contribute to the network, ensuring they receive fair compensation
and potentially profit by utilising or creating new capacity.

Demand Providers: Attracting developers and businesses to bring
data and customers to the network, rewarding them with a share of
the revenue, potentially tapping into open-source communities
that significantly drive cloud workloads.

Network Operator: SILO intends to sustain its development and
operations by retaining reasonable profits through cost-effective
service offerings and revenue sharing with node operators and
demand providers.

Furthermore, the SILO network is specifically built to provide
streamlined billing and payment procedures, support a wide range of
transaction types, including both cryptocurrency and conventional
payment methods, and guarantee adherence to international
regulatory norms.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 This economic model has the dual objective of distributing data
storage and ensuring that the economic advantages of the cloud
storage business are accessible to everyone, so offering a feasible,
expandable, and economically advantageous alternative to centralised
cloud providers.

2.4 Embracing S3 Compatibility
Amazon Web Services (AWS) continues to dominate the cloud storage
industry, mostly because of its early entry into the market and wide-
ranging ecosystem. Amazon S3, specifically, is considered the most
commonly used cloud storage protocol. In order to successfully
compete and encourage the use of decentralized storage, it is essential
to provide interoperability with Amazon S3.

SILO's objective is to minimise the obstacles faced by consumers while
shifting from centralised to decentralized storage systems. SILO offers
a smooth transition for customers who are used to the services
provided by Amazon S3 by ensuring compatibility with the Amazon S3
API. Ensuring compatibility is crucial for reducing the expenses
associated with moving and seamlessly integrating into established
operations without causing significant disruptions.
SILO's approach includes:

Bucket Operations: Functions like creating, deleting, and listing
storage buckets.
Object Operations: Handling data through commands to get, put,
delete, and list objects within these buckets.

These operations ensure that applications developed for Amazon S3
can operate on SILO with little to no modification required, making it an
attractive alternative for users seeking enhanced security and privacy
without sacrificing performance or durability.

To cater to diverse user needs, SILO supports two primary integration
models:

Single Tenant Nexus: This model allows users complete control over
their data, with end-to-end encryption and direct peer-to-peer
data transmission to storage nodes.
Multi-Tenant Nexus: In this setup, a trusted provider manages
encryption and data transmission, requiring users to provide
encryption keys with each request to ensure security in a hosted
environment.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 By supporting a broad range of the S3 protocol and offering flexible
integration options, SILO positions itself as a robust, secure, and user-
friendly decentralized storage solution.

2.5
Durability, Device Failure, and Churn
Management
In order for a storage system to be efficient, it must consistently store
and retrieve data, while ensuring strong durability and limiting the
possibility of data loss, even in the event of device failures and network
problems. Component failure is an unavoidable occurrence in any
hardware setting, as hard drives deteriorate, servers malfunction, and
network connections get disrupted. SILO is specifically developed to
address these circumstances by using resilient redundancy solutions
that guarantee data is not permanently lost due to any one failure
point.

Decentralized systems such as SILO are especially susceptible to
churn, which refers to the frequent addition and removal of nodes from
the network. Research has shown that in peer-to-peer networks, the
length of time a node is active may vary greatly, typically lasting just a
few hours or minutes. The frequent loss of nodes due to high turnover
requires extra redundancy in order to compensate for this, resulting in
an increased bandwidth need for the network to operate at its best.

In order to tackle these difficulties, SILO promotes the stability of
storage nodes by providing incentives for long-term engagement. This
minimises network turnover and eliminates the need for unnecessary
duplication and data transmission capacity, which are crucial for
sustaining system effectiveness and cost-efficiency. The network's
architecture incorporates methods for data preservation, repair, and
the seamless substitution of lost redundancy to guarantee the long-
term security and accessibility of data.

To get a comprehensive understanding of how repair bandwidth
fluctuates in response to node churn, please refer to section 7.3.3 and
the accompanying research that investigates the relationship between
network stability and operational efficiency.

www.larissa.network | www.silos3.com

Design Constraints of SILO22.6 Optimising for Low Latency
Decentralized storage systems such as SILO provide significant
opportunities for using parallelism. This may result in improvements in
data transmission speeds, computational capacities, and overall
system efficiency, even in cases when individual network connections
are sluggish. Nevertheless, parallelism by itself does not automatically
decrease latency, despite the advantages it offers.

Latency continues to be a crucial constraint on performance,
especially in applications that need high levels of performance. The
latency of a single network connection, if it is part of a transaction,
establishes the least duration that the operation may need. Hence, it is
essential for decentralized systems to not only use parallelism but also
prioritise the reduction of latency across the whole system design.

Consistent and assertive optimization endeavours are vital to attain
minimal delay at both the process and system levels. This entails
optimising the network's architecture to minimise data transmission
delay and enhance responsiveness, so assuring that SILO can
successfully cater to the requirements of latency-sensitive
applications.

Bandwidth2.7

The global availability of bandwidth has been consistently growing,
while access to it remains unequal throughout the globe. While some
users may benefit from fast and unrestricted data transfer rates,
others have notable restrictions. The difference between the two
creates distinct difficulties for decentralized networks such as SILO.

Residential internet service providers (ISPs), particularly in nations such
as the United States, often provide asymmetric connections in several
areas. These plans promote fast download speeds but provide much
slower upload rates. In addition, Internet Service Providers (ISPs) often
enforce bandwidth limitations, which restrict the maximum amount of
data that may be sent during a given month. For example, an Internet
Service Provider (ISP) could promote download speeds of 10
megabytes per second (MB/s) but impose a restriction on customers,
allowing them to transmit a maximum of 1 terabyte (TB) of data every
month. This limitation effectively caps the average data transfer rate at
around 385 kilobytes per second (KB/s) to prevent users from incurring
additional charges for exceeding their data allowance.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 These limitations not only influence the way data is stored and
retrieved, but also effect the amount of bandwidth needed for
maintaining and repairing the data. These factors are crucial in a
decentralized system where device failures and changes are
anticipated. A system that fails to effectively regulate bandwidth may
inadvertently give preference to operators having access to fast,
unrestricted connections, therefore diminishing the decentralisation of
the network.

In order to guarantee optimal performance of SILO in various situations,
it is essential to actively reduce bandwidth use. This method ensures
the preservation of a really decentralized storage network, offering
equitable chances for user involvement irrespective of their internet
connectivity capabilities.
For a deeper exploration of how bandwidth availability and repair traffic
affect usable space, refer to section 7.1.1.

Optimising for Object Size2.8

Storage systems may often be classified into two types depending on
the average size of the data items they handle. Within this framework,
files that are a few megabytes or greater are categorised as "large".
Databases are generally more suitable for keeping several little bits of
information, while object storage systems or file systems are more
ideal for handling bigger files.

SILO is mainly designed to operate as a decentralized object storage
platform that is specifically geared for handling bigger files. The
foundation of our protocol is based on the assumption that the bulk of
objects would have a size of 4MB or more. Storing smaller files may not
be cost-efficient since storage and retrieval operations are geared for
bigger data volumes.

This design approach is inclusive of use scenarios that entail accessing
a large number of tiny files. Users have the option to use a packing
approach, which involves combining several little files into a single,
larger entity. SILO enables users to access smaller files without the
need to download the full aggregated object. This is achieved via
support for searching and streaming, which provides for flexibility while
minimising storage volumes.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Handling Byzantine Faults2.9
SILO functions in a decentralized and untrusted environment, unlike
centralised storage systems like Amazon S3. In this context, storage
nodes are independently operated and not intrinsically trustworthy.
The decentralized structure implemented via the public internet allows
for the inclusion of any individual as a storage provider, resulting in a
range of differences in the dependability and functioning of nodes.

To navigate this, SILO adopts the Byzantine, Altruistic, Rational (BAR)
model to categorise participants:

Byzantine Nodes: These are nodes that may behave arbitrarily or
maliciously, deviating from the protocol due to failures, malicious
intent, or other reasons. They act independently of the protocol’s
utility function and can attempt to disrupt the system.
Altruistic Nodes: These nodes adhere strictly to the protocol,
participating as intended even when it might not be in their direct
interest to do so. They are considered "good actors" in the network.
Rational Nodes: These nodes make decisions based on their self-
interest, participating in or deviating from the protocol based on
what benefits them the most. They are "neutral actors," neither
strictly following nor subverting the protocol unless it aligns with
their interests.

In centralised systems, such as typical cloud storage, nodes are
presumed to be altruistic due to being managed and maintained by a
single party. On the other hand, SILO functions inside a decentralized
setting, where each node is autonomously controlled. This
configuration requires the network to operate on the premise that
most nodes are rational, but a smaller portion may be Byzantine,
without making any assumptions about charity.
In order to secure the reliable functioning of the system, SILO includes
incentives that motivate rational nodes to behave in a manner that is
similar to altruistic nodes, therefore aligning their behaviours with the
anticipated protocol. At the same time, it incorporates techniques to
reduce or remove the influence of Byzantine nodes, guaranteeing
strong performance even in the presence of possible aberrations.
Crucially, while SILO has to deal with Byzantine behaviour, it does not
depend on a Byzantine fault-tolerant consensus mechanism. Instead, it
chooses other ways to successfully handle fault tolerance.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Minimising Coordination2.10
Eliminating the need for coordination in distributed systems may
greatly improve performance and scalability. Coordination refers to the
need for processes that are being executed simultaneously to
communicate or halt in synchronisation in order to accomplish tasks.
This adds delays that may significantly affect the overall throughput of
the system.

Studies have shown that systems that limit the need for coordination
may achieve much higher throughput compared to those that depend
on coordinated operations to ensure accuracy. For instance,
techniques that circumvent coordination, such Highly Available
Transactions, have shown performance improvements of two to three
orders of magnitude compared to standard coordinated systems in
wide-area networks. The Anna database demonstrates this notion by
attaining speeds up to 10 times faster than systems like Cassandra and
Redis via minimising coordination wherever feasible.

Certain activities need coordination to guarantee consistency and
accuracy. However, frameworks such as Invariant Confluence and the
CALM principle aid architects in determining when cooperation is
required. Nevertheless, in order to attain scalability to exabyte
magnitudes, it is imperative to minimise coordination to the greatest
extent feasible. Systems that optimise coordination get greater
scalability, since the addition of resources immediately enhances
throughput and performance. On the other hand, systems that rely on
coordination, such as those that use global ledgers or consensus
protocols, do not see substantial advantages from more resources.

In order to efficiently scale SILO, our objective is to reduce the need for
coordination, restricting it to tiny areas that are within the control of
the user. This method decreases dependence on global ledgers or
blockchain-like solutions, enabling the attainment of greater scalability
and performance in a decentralized storage setting.

Design Constraints of SILO2

www.larissa.network | www.silos3.com

Core Framework3

This chapter introduces the fundamental foundation of SILO, outlining
the necessary components required to satisfy the defined design
requirements. The primary purpose of this fundamental framework is to
provide adaptability and durability, allowing SILO to adjust to changing
requirements without requiring significant restructuring.

The framework establishes the necessary elements to guarantee
adherence to our design principles, enabling the modification or
substitution of individual components without affecting the whole
system. The modular nature of the SILO framework guarantees that it
can effortlessly incorporate advancements and adjust to new
difficulties in the quickly evolving digital ecosystem, ensuring its
continued relevance and efficiency over the next decade.

Framework Overview3.1

The SILO framework is specifically developed to carry out many
fundamental duties that are crucial for decentralized storage. Its
primary objective is to guarantee the security, dependability, and
availability of data across the network. Every element within this
structure helps to attaining these objectives by concentrating on
distinct tasks:

Store Data: Data storage begins with the client encrypting and
dividing the data into multiple fragments. These fragments are then
distributed across various peers in the network. Metadata is
generated during this process to track where each piece of data is
stored.

1.

Retrieve Data: To retrieve stored data, the client uses the metadata
to locate the data fragments across the network. These fragments
are then collected and reassembled into the original data on the
client’s device.

2.

Maintain Data: To ensure data reliability, the system monitors
redundancy levels. When redundancy falls below a certain
threshold, the system regenerates and replaces the missing data
fragments to maintain data integrity.

3.

Pay for Usage: Users compensate the network for the storage
services rendered, typically through a unit of value or
cryptocurrency.

4.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 To enhance clarity and manageability, the design is divided into eight
independent components, which are integrated to form the complete
SILO framework:

Storage Nodes: These are the individual devices or servers that
store data fragments.

1.

Peer-to-Peer Communication: This component manages the
communication between nodes, facilitating the transfer and
retrieval of data.

2.

Redundancy: Ensures multiple copies of data fragments are stored
across the network to prevent data loss.

3.

Metadata: Keeps track of where data fragments are stored, enabling
efficient data retrieval.

4.

Encryption: Protects data privacy by encrypting data before it is
stored on the network.

5.

Audits and Reputation: Monitors the reliability of storage nodes and
maintains a reputation system to encourage good behaviour.

6.

Data Repair: Automatically regenerates and replaces any lost data
fragments to maintain the required level of redundancy.

7.

Payments: Manages the financial transactions between users and
storage providers, ensuring fair compensation for services.

8.

This modular approach allows for flexibility and adaptability, enabling
the SILO network to evolve and improve over time while maintaining its
core functionalities.

Storage Nodes3.2

The primary function of storage nodes in the SILO network is to store
and retrieve data, while ensuring sufficient network capacity and
responsiveness. The selection of these nodes is dependent on several
parameters, such as ping time, latency, throughput, bandwidth
constraints, available disk space, geographic location, uptime, and
dependability in appropriately responding to audits. Storage nodes are
rewarded for their involvement by receiving remuneration for both the
storage of data and the management of data transfers.

The process of selecting storage nodes in SILO is dynamic and non-
deterministic, since it is impacted by external factors that are subject
to change. This method requires the monitoring of metadata to keep
track of the nodes that are chosen for each data upload, like the
architecture seen in systems such as GFS, HDFS, or Lustre. Contrary to
systems like Dynamo that use a deterministic node selection
procedure, SILO's approach prioritises flexibility and adaptability by
considering current circumstances and needs to determine the
appropriate node selection.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 The importance of a strong metadata storage system inside the SILO
framework is emphasised by the fact that it is necessary for managing
storage nodes effectively. This system ensures that data retrieval and
maintenance are done accurately and efficiently throughout the
network.

Network Communication Protocols3.3

The SILO network relies on a defined protocol to provide dependable
and secure data flow between peers. This protocol is crucial for
preserving the integrity and efficiency of the decentralized network
and must comply with many fundamental requirements:

Peer Reachability: The protocol must provide communication
between peers, even in the presence of firewalls or network
address translators (NATs). To overcome network restrictions and
enable communication between peers, several solutions such as
Session Traversal Utilities for NAT (STUN), Universal Plug and Play
(UPnP), or NAT Port Mapping Protocol (NAT-PMP) may be used.
Authentication: In order to thwart man-in-the-middle attacks and
guarantee secure communications, the protocol utilises
cryptographic authentication techniques that are similar to those
used in S/Kademlia. Every individual in the network must use
cryptographic methods to confirm the identity of other individuals
they interact with, hence increasing trust and security inside the
network.
Complete Privacy: The protocol must ensure that all conversations
are confidential and impervious to interception, safeguarding
against unauthorised surveillance. Confidentiality is of utmost
importance in processes such as bandwidth measurement, where
the exchange of data between clients and storage nodes must be
kept private. By default, all forms of communication are encoded to
guarantee confidentiality and deter illegal entry.

Furthermore, the framework necessitates a mechanism to get peer
network addresses by using a distinct identity. This enables any peer
to establish a connection with another peer using this identification,
similar to the functioning of the Domain Name System (DNS) on the
internet. However, in contrast to DNS, this system needs to prevent
centralised registration and instead depends on a decentralized
network overlay constructed on the peer-to-peer communication
protocol.
For more detailed implementation specifics, refer to Section 4.6.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Redundancy3.4

Redundancy is an essential aspect of the SILO network to guarantee
the continuous accessibility of data, even in the event of some storage
nodes being unavailable. This is especially crucial in decentralized
systems, since nodes are autonomously controlled and have the
potential to exit or malfunction at any given moment. In order to
provide consistent access and dependability, our redundancy method
is specifically formulated to store data in a manner that maximises the
likelihood of accessibility, even in situations when some nodes are not
operational.

Limitations of Traditional Replication: Conventional approaches to
ensure data durability often use basic replication, where numerous
copies of data are kept across distinct nodes. Nevertheless, this
method establishes a direct connection between durability and the
expansion factor, which is the ratio of stored data to real data. This
results in substantial storage overhead and higher expenses. For
instance, if data is replicated eight times to achieve high durability, it
leads to an expansion factor of 8x, or 800%, which requires a
significant amount of storage space and bandwidth.

Erasure coding is used by SILO to address the drawbacks of
replication. This sophisticated technique allows for efficient
redundancy without compromising durability due to bandwidth
consumption. Erasure codes are widely used in distributed storage
systems and provide a more efficient method for guaranteeing data
integrity and availability.

Erasure coding involves splitting data into multiple pieces and
encoding them such that the original data can be reconstructed from a
subset of these pieces. This approach is defined by two parameters, k
and n:

k: The number of data pieces needed to reconstruct the original
data.
n: The total number of pieces after encoding.

For instance, with a (k=20, n=40) erasure code, there are 40 encoded
pieces, and any 20 of these pieces are sufficient to reconstruct the
original data. This method provides higher durability than a (k=10, n=20)
code with the same expansion factor of 2, because the risk is spread
across more nodes.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 To illustrate:

A (k=4, n=8) erasure code has an expansion factor of 2 and a high
probability of durability (99.86%).
In contrast, a replication scheme with a similar expansion factor
offers much lower durability for the same data overhead.

Calculating Durability: Durability in a decentralized network can be
estimated using a probabilistic model. Assuming a node churn rate ppp
(the probability of a node going offline in a given period), durability P(D)
can be modelled using a Poisson distribution. The formula for
calculating the probability that data remains accessible is given by:

where λ=pm, representing the expected number of pieces lost due to
node churn. This formula calculates the cumulative probability that at
most n−k pieces are lost, allowing the original data to be reconstructed.
Advantages of Erasure Coding: Erasure coding provides several
advantages:

Lower Expansion Factor: Achieves high durability with less storage
overhead.
Reduced Bandwidth Usage: Minimises the amount of data
transferred across the network, essential for scalability.
Higher Payout for Nodes: Allows storage node operators to receive
more direct income per byte stored, as high expansion factors
dilute earnings.

By using erasure coding, SILO ensures robust data redundancy and
durability, optimising both cost and performance for decentralized
storage.

Design Constraints of SILO2 Impact of Erasure Codes on Streaming3.4.1

Erasure codes are widely used in many streaming applications, such as
audio CDs and orbital communications, because of their effectiveness
in error correction and data recovery. Incorporating erasure coding into
the SILO design does not impede our need to provide streaming, which
is essential for achieving compatibility with Amazon S3.

Erasure codes provide significant performance benefits, especially in
reducing the impact of extended reaction times in dispersed systems.
A long-tail response refers to the occurrence of abnormally slow
reaction times in a server or storage node, resulting from unknown
reasons and causing delays in overall operations. Although rare, these
delays may vary greatly and cause performance issues, shown as a
"long tail" on a probability density graph.

In distributed systems such as MapReduce, delays like this are
mitigated by using "backup tasks," which are duplicate requests
specifically intended to compensate for underperforming nodes,
sometimes known as "stragglers." Despite the redundancy of these
backup activities, they effectively prevent sluggish nodes from causing
delays in the overall operation. Without this method, the duration of
operations in MapReduce might increase by 44%.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 The key element of integrating erasure coding into streaming is the
ability to encode and decode data in small chunks, rather than
processing the whole file at once. This approach enables seamless data
delivery, enabling real-time streaming without significant latency or
buffering issues. SILO employs sequential encoding of brief data
segments to provide efficient streaming capabilities, while
simultaneously using the durability and redundancy provided by
erasure codes.

This technique ensures the long-lasting and flexible nature of our
system, allowing it to accommodate many situations, including those
requiring high speed and lowest latency, such as video streaming. To
get more details on the incorporation of erasure codes in our streaming
support system, go to Section 4.8.

3.4.2
Impact of Erasure Codes on Long-Tail
Latency

www.larissa.network | www.silos3.com

Design Constraints of SILO2 The SILO system utilises erasure coding to effectively manage long-tail
answers in storage. Optimization of uploads and downloads may be
achieved by using a greater (k, n) ratio, which involves encoding data
into more pieces than required for ensuring specified durability
guarantees. During an upload, after a sufficient number of pieces have
been transferred to meet the necessary redundancy, any more
uploads may be terminated, enabling the process to finish as swiftly as
the most efficient nodes. This strategy circumvents the need to wait
for the nodes with the slowest processing speed and reduces the total
duration of the upload process.
Similarly, when downloading, the system has the capability to choose
the quickest peers to get data from, disregarding slower or
momentarily inactive nodes. The capability to choose the swiftest
nodes guarantees that operations are not delayed by slower
respondents, essentially transforming a potential drawback into a
performance advantage.

SILO utilises over-encoding of files to distribute the burden of
frequently accessed material evenly throughout the network, resulting
in efficient and rapid data retrieval. This technique offers resilient load
balancing features while ensuring optimal performance and
dependability. To get further information on load balancing and its
implementation in active files, go to Section 6.1.

3.5 Metadata Management

Within the SILO network, it is essential to retain comprehensive records
of the particular nodes that store individual data bits once an object
has been separated via erasure coding and distributed over several
nodes. This is particularly crucial since users could choose storage
nodes based on factors like geographical proximity, performance
attributes, or available capacity. SILO utilizes an explicit node selection
technique instead of an implicit one, such as consistent hashing in
systems like Dynamo, in order to accommodate user preferences and
ensure compatibility with Amazon S3.

Metadata Requirements and Structure:

To effectively manage and retrieve data, the metadata system in SILO
needs to support several key functionalities:

Hierarchical Objects: The ability to manage paths with prefixes,
allowing for an organised and hierarchical structure of data similar
to directory paths.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Per-Object Key/Value Storage: The ability to store additional
metadata for each object, which might include data like creation
dates, modification dates, and other custom attributes.
Arbitrary File Sizes and Quantities: The system must handle both
large files and a large number of files efficiently, without size
limitations.
Arbitrary Key-Based Access: Users must be able to store and
retrieve data using any arbitrary key, often structured like a file
path.
Deterministic Key Iteration: Support for paginated listing, which is
crucial for applications that need to browse or manage large sets of
stored objects.

The metadata system must be able to handle a high amount of churn
caused by frequent additions, revisions, or removals of objects,
according to these criteria. Additionally, it must be able to adapt and
expand in accordance with the general expansion of the network. For
example, if 1 exabyte of data is stored with an average object size of
50MB and an erasure code is used with a parameter n=40, the
management of metadata would be required for 20 billion objects. If
each item is around 40×64+192 bytes, the total amount of metadata
would be approximately 55 terabytes.

Partitioning and Flexibility:
In order to effectively handle this large amount of data, SILO's
metadata system is specifically built to be extensively divided per
user. Consequently, the metadata of each user is handled
independently, thereby minimising the burden on individual users. For
instance, if a user stores 100 terabytes of 50MB items, the metadata
overhead would amount to around 5.5 gigabytes.

SILO also prioritises the interchangeability of the metadata storage
component. Users may enhance flexibility and customization by
choosing the most suited choice for their requirements among
different implementations of metadata storage. This method is in line
with SILO's objective of minimising user cooperation, decreasing
possible bottlenecks, and eliminating single points of failure.

Distributed and Resilient Design:
In order to guarantee both availability and fault tolerance, the metadata
services are dispersed among numerous regions within each
geographic area. This distribution provides resilience against a range of
failures, including device malfunctions, server outages, network
problems, and even interruptions at a regional level.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 API Compatibility:
For compatibility with Amazon S3, the metadata API in SILO provides
straightforward and essential functions:

Put: Store metadata at a specified path.
Get: Retrieve metadata from a specified path.
List: Provide a paginated and deterministic listing of existing paths.
Delete: Remove metadata from a specified path.

SILO's features enable efficient metadata management, catering to
diverse storage requirements while ensuring user-friendliness and
seamless integration with established cloud storage protocols.

3.6 Encryption

In order to guarantee utmost security and confidentiality, it is essential
that all data and metadata inside the SILO network be encrypted.
Encryption should be implemented at the earliest stage of the data
storage process, preferably prior to the data being sent from the user's
device. Therefore, in order to ensure the anonymity of data from its
source, it is necessary for any interfaces or client libraries that are
compatible with Amazon S3 or comparable protocols to be operated
on the same device as the user's application.

Pluggable Encryption Mechanism: SILO has a flexible encryption
system that enables users to choose their own encryption strategy.
Users have the ability to choose an encryption method that aligns with
their particular security requirements, thanks to this flexibility.
Furthermore, the system retains information about the selected
encryption method, which is essential for data retrieval in the event
that encryption settings are modified or enhanced in the future.

Unique Encryption Keys for Files: To provide improved access control
and heightened security, every file in SILO is encrypted using a unique
key. This strategy guarantees that accessing one file does not result in
accessing others, hence preserving a stringent segregation between
various files. Users have the ability to share individual files without
jeopardizing the encryption keys or information of other files, providing
precise control over data sharing and access.

Encryption Metadata Management: To ensure the security and
reliability of the encryption techniques, it is crucial to securely and
reliably retain information about the keys and algorithms used for
encrypting each file. The metadata, along with other file information
such as its path, is saved in the aforementioned metadata storage

www.larissa.network | www.silos3.com

Design Constraints of SILO2 system. In order to guarantee security, this metadata is also encrypted
using a deterministic, hierarchical encryption technique.

Hierarchical Deterministic Encryption Scheme: SILO utilises a
hierarchical encryption method that is based on BIP32, a widely
accepted standard for hierarchical deterministic wallets in the field of
cryptocurrencies. This technique facilitates the safe and adaptable
exchange of files, allowing the sharing of subtrees while keeping the
parent nodes concealed. Additionally, it guarantees the ability to share
individual files separately from others, therefore improving privacy and
control. To get a comprehensive analysis of our path-based
hierarchical deterministic encryption technique, please refer to Section
4.11.

3.7
Data Integrity Audits and Node
Reputation
Ensuring the reliable storage of data by storage nodes is vital for the
success of the SILO network. In order to maintain trust and
dependability, it is crucial to provide processes that authenticate and
confirm the proper storage of data by storage nodes.

Establishing Node Identity and Initial Reputation: Upon joining the SILO
network, storage nodes create a distinct identity by performing a brief
proof-of-work task. Establishing this initial identification is crucial for
fostering confidence and confirming the authenticity of the node.
During the vetting stage, newly added storage nodes are subjected to
rigorous audits and uptime tests to verify their proper functioning.
Initially, a fraction of the storage node's profits is retained as a
precautionary measure to mitigate possible losses in the event of the
node's sudden departure from the network. The withheld money may
be used to pay the expenses of repairing any data kept on the node in
the event of its departure.

Audit Mechanism: The SILO network utilises a resilient audit system to
oversee and authenticate the integrity of data stored on every node.
This procedure entails conducting probabilistic audits, referred to as
proofs of retrievability, on all files stored on a node. These audits are
conducted as random tests to verify, with a significant level of
confidence and little additional costs, that a storage node is
functioning successfully, preserving the data's integrity, and not
encountering hardware malfunctions or engaging in harmful activities.

When a storage node fails an audit, it is designated as unreliable, and

www.larissa.network | www.silos3.com

Design Constraints of SILO2 the data held on that node is redistributed to other nodes to maintain
data integrity. This technique contributes to the preservation of the
network's health and stability by circumventing faulty nodes and
guaranteeing that data is consistently saved on trustworthy and
dependable nodes.

Probabilistic Audits and False Positives: The audit technique used by
SILO does not include scrutinising each individual byte of every file.
Instead, it employs a probabilistic methodology to authenticate the
data, which may sometimes lead to false positives—cases where the
system erroneously concludes that the data is intact while it has really
been altered or partly lost. Nevertheless, the probability of a false
positive may be computed and reduced by conducting repeated
audits, so guaranteeing that any missing or tampered data is identified
with a high level of certainty.

Reputation System: SILO utilises a reputation system to monitor and
control the dependability of storage nodes by maintaining a record of
the audit results for each node. This solution enables the network to
make well-informed judgments about the reliability of nodes, hence
improving the overall security and integrity of the data storage
network. To get further information on our first strategy for reputation
management, please refer to Section 4.15.

3.8 Data Repair
Data loss is an inherent risk in every distributed storage network,
resulting from a variety of sources. The SILO network faces several
factors that may lead to data loss, including corruption, malicious
activities, hardware failures, software mistakes, and user-initiated
deletions. However, the most prominent risk to data integrity in the
SILO network is the frequent replacement of storage nodes, also known
as storage node churn. Storage node churn is the recurring process of
nodes entering and departing the network, which, if not properly
managed, may result in the loss of stored data.

As mentioned in Section 2.5, the typical duration of storage nodes'
sessions in several decentralized systems might vary from several
hours to a few minutes. The significant pace at which employees leave
their positions is a considerable obstacle in ensuring the long-term
persistence of data. Although data corruption and hardware
breakdowns are worrisome, they are not as substantial a threat to data
integrity as the continuous variability of storage nodes.

Data Repair Process:
In order to reduce the possibility of data loss caused by node churn,

www.larissa.network | www.silos3.com

Design Constraints of SILO2 SILO implements a resilient data repair mechanism. This procedure
encompasses many essential stages:

Audit Detection: The audit system consistently checks storage
nodes to verify the accurate storage of data. When a node fails to
accurately store data or becomes disconnected, the system
identifies this divergence from the anticipated behaviour.

1.

Data Reconstruction: When the system detects a failure, it uses the
remaining data fragments to rebuild the missing data. Erasure
coding enables the complete recovery of the original data from a
portion of its fragments.

2.

Data Regeneration:The system reconstructs the original data and
then regenerates the missing portions, which are then stored on
new and dependable storage nodes. This phase guarantees the
preservation of data redundancy, even when nodes enter and exit
the network.

3.

Incentivizing Stability:
In order to decrease the occurrence of node churn and encourage
sustained involvement, SILO has devised a payment method that
incentivizes storage node owners who maintain their nodes in an active
state for prolonged durations. By offering rewards to nodes for staying
connected over extended periods, maybe spanning months or even
years, the network can improve the longevity of data and minimise the
need for periodic maintenance.

This method not only contributes to the general well-being of the
network but also decreases the operational expenses related to data
restoration. SILO's objective is to provide a stable and robust storage
environment in decentralized networks by motivating storage node
owners to maintain continuous uptime and dependability, hence
overcoming the inherent obstacles.

3.9 Payment Systems
Payments, value allocation, and invoicing are crucial elements in
sustaining a stable and robust decentralized storage environment.
Effective and dependable payment systems provide equitable
compensation for storage providers and maintain the network's
seamless operation by ensuring a consistent availability of storage
resources.

Avoiding Blockchain Dependency for Payments:
In order to minimise the delay and maximise the rate of data transfer in
the SILO network, it is essential to eliminate any interdependencies
between transactions and the blockchain technology.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 As mentioned in Section 2.10, it is not feasible to wait for blockchain
confirmations in a system that needs actions to be performed within
milliseconds. Transactions that are based on blockchain technology
often experience substantial delays since they need agreement among
several distributed nodes. This may negatively impact performance in a
storage environment that requires fast processing.

Contrarily, the SILO framework utilises game-theoretic models to
encourage network members to behave rationally and honestly in
order to obtain compensation. These models draw inspiration from
real-world financial interactions that prioritise trust and collaboration
as essential factors. SILO promotes the beneficial contribution of all
members to the network's general health and stability by imitating
these interactions.

Background Settlement Process:
Transactions in the SILO network are handled using a background
settlement mechanism, where players who follow the rules work
together to resolve financial obligations. This solution eliminates the
need for immediate reliance on a single payment method, which results
in more seamless transactions and decreases the potential risks
connected with untrustworthy payers. Storage nodes are advised to
minimise their interaction with unfamiliar or untrusted individuals who
want to make payments until a certain degree of trust is built. This
precaution ensures that the nodes are more likely to be adequately
compensated for the services they provide.

Tracking and Billing for Service Usage:
The framework also incorporates systems for monitoring and
consolidating the worth of services used by customers who store data
on the network. SILO's use of usage fees enables the establishment of a
viable economic framework for its decentralized storage marketplace.
This strategy guarantees equitable remuneration for storage providers
in accordance with their resources, while customers are invoiced in a
transparent manner, taking into account their use.

Flexibility in Payment Methods:
Although the SILO network is meant to be flexible in terms of payment
options and does not enforce a single payment method, it presently
defaults to utilise a native token as the main form of payment. While
this token is now the default, SILO has the capability to accommodate
several different payment methods in the future. These options include
cryptocurrencies such as Bitcoin and Ethereum, conventional payment
methods like credit or debit cards and ACH transfers, as well as
unorthodox payment formats.

SILO intends to provide a smooth experience for all users in the

www.larissa.network | www.silos3.com

Design Constraints of SILO2 network by implementing a payment system that is both versatile and
adaptive, allowing it to meet a broad variety of user preferences.

www.larissa.network | www.silos3.com

Concrete Implementation4

Due to the design restrictions of our framework, we possess a clearly
established basis on which to go further. Nevertheless, within this
structure, there exists adaptability in the manner in which each
element is executed. Within this part, we provide our preliminary
approach for implementing the project, acknowledging that these
specific plans may change as time progresses. We prioritise the
implementation of a cloud storage solution that is safe, high-
performing, and long-lasting, in accordance with the criteria stated in
our framework.

Definitions4.1
This section defines key terms used throughout the description of our
concrete implementation:

Actors4.1.1
Client: An end-user or application responsible for uploading or
downloading data from the SILO network.
Peer Class: A category of network participants that perform
specific roles and services. There are three peer classes within the
SILO network:

Storage Node: These nodes are responsible for storing data for
clients and are compensated for their storage space and
bandwidth usage. Storage nodes register directly with Orbitals
(previously known as orbitals) that they trust.
Sconnect: This peer class, represents any application or service
using the libsconnect library to store or retrieve data. Sconnect
peers perform encryption, erasure encoding, and coordinate
with other peer classes on behalf of the client. Unlike other
classes, Sconnect peers are not required to be online
continuously and are relatively lightweight.
Orbital: Previously referred to as orbitals, Orbitals are
responsible for various network management tasks. They allow
storage nodes to register, store metadata, manage node
reputation, perform audits and repairs, aggregate billing data,
process payments, manage user accounts, and oversee
authorization through AuthShield.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 libsconnect: A library that provides all the necessary functions to
interact directly with storage nodes and Orbitals. This library will be
available in multiple programming languages to accommodate
different user needs.
Nexus: Nexus provides a compatibility layer between other object
storage services (such as Amazon S3) and libsconnect, exposing an
S3-compatible API for seamless integration.
Sconnect CLI: A command-line interface that facilitates uploading
and downloading files from the network, managing permissions,
sharing, and managing user accounts.
ShareHub: A service for managing link sharing and permissions,
enabling users to share access to specific files or directories within
the network.

These definitions establish a foundational understanding of the various
components and participants in the SILO network, outlining their roles
and responsibilities.

Data Definitions4.1.2

This section provides definitions for key data-related terms used in our
implementation:

Collection (Bucket): A named, unbounded collection of objects or
files, each identified by a unique object key within the collection.
Object Key: A unique identifier for an object within a collection. It is
an arbitrary string that functions like a file path, using forward
slashes to denote access control boundaries (e.g.,
videos/carlsagan/gloriousdawn.mp4). Object keys are encrypted
before leaving the client's computer for privacy and security.
Data Object (File): The primary data type within the system,
represented by an ordered collection of one or more segments. An
object can contain any amount of data, with no minimum or
maximum size, and supports user-defined key/value metadata
fields. Data and metadata are encrypted client-side.
Object Metadata: Encrypted key/value fields defined by users,
associated with a specific object.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Segment: A single array of bytes within an object, ranging from 0 to
a maximum size defined by the Orbital (previously orbital).
Segments can be either remote or inline.
Remote Segment: A segment that is erasure encoded and
distributed across the network, with a size greater than the
metadata needed to manage it. This type of segment is stored
across multiple nodes.
Inline Segment: A smaller segment where the data occupies less
space than the metadata needed for remote storage. This data is
stored directly, or "inline," without being distributed across the
network.
Encryption Block: A fixed-size byte array used as a boundary for
encryption. Each block is encrypted individually, often aligned with
the stripe size for efficiency.
Stripe: A fixed-size byte array used as a boundary for erasure
encoding within a segment. Stripes are encoded individually to
generate erasure shares and are the units on which audits are
performed.
Erasure Share: A piece generated from encoding a stripe. Multiple
erasure shares are created, but only a subset is needed to
reconstruct the original stripe. Each share has an index to identify
its position.
Piece: A concatenation of all erasure shares with the same index
from a remote segment's stripes. For example, if a stripe generates
n erasure shares, there will be n pieces, each comprising shares
with the same index from different stripes.
Pointer: A data structure that either contains inline segment data or
tracks the locations of remote segment pieces across storage
nodes, along with other relevant metadata.

These definitions clarify the various components involved in managing
data within the SILO network, ensuring efficient storage, security, and
retrieval.

4.2 Network Participant Roles
Our design strategy builds upon previous iterations and parallels
distributed storage architectures like the Google File System (GFS) and
Lustre. In these systems, three primary roles are essential: metadata
servers, object storage servers, and clients. Here's how these roles are
adapted and enhanced in the SILO network:

Storage Nodes: These nodes, previously referred to as Storj Share,
are responsible for storing the bulk of data in the network. Storage
nodes manage the data that clients upload and are selected based
on various performance criteria, including uptime and bandwidth
capabilities.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Orbitals: Formerly known as orbitals, Orbitals are metadata servers
that manage and store metadata, handle storage node
registrations, and coordinate data integrity checks. They also
perform audits, manage user accounts and permissions through
AuthShield, and facilitate payments. Unlike the previous centralized
model, any user can now operate their own Orbital, although many
may choose to rely on trusted third-party providers.
Sconnects: Sconnects represent clients that interface with the
network to store and retrieve data. They are lightweight and do not
require constant online presence. Sconnects handle tasks like
encryption, erasure coding, and coordinating with other network
components. The libsconnect library provides all necessary
functionalities for Sconnects to interact seamlessly with storage
nodes and Orbitals.

This refined structure optimizes network performance and resilience
by distributing roles among different participants. By leveraging proven
distributed system architectures, SILO ensures robust, scalable, and
high-performance decentralized storage, accommodating a variety of
user needs while maintaining data integrity and security.

4.3 Data Node Operations
Main Role of Data Nodes:
Data nodes, formerly known as storage nodes, play a vital role in the
SILO network, chiefly responsible for the dependable storage and
retrieval of data. Data node operators are usually individuals or
companies who have extra hard drive space and want to generate cash
by leasing this space to others on the network.

Node Setup and Configuration:
Operators are responsible for installing and configuring the SILO
software on their own computers. During this process, they choose the
amount of disk space and bandwidth they are prepared to commit for
each Orbital (formerly known as orbital). During the registration
procedure, data nodes submit details on their accessible resources
and indicate their token wallet address for payment purposes.

Data Storage and Management:
Data nodes contain data fragments together with optional "time-to-
live" (TTL) configurations, which determine the duration for which a
data fragment should be retained before it is removed. If a Time to Live
(TTL) is not given, the data will be held forever. Data nodes are
responsible for maintaining a database that manages expiry periods
and periodically removes expired data in order to minimize storage.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Bandwidth and Payments:
Data nodes also monitor and record the amount of bandwidth they
provide for the data they provide, which is then sent to Orbitals for
payment processing. Nodes have the ability to choose which Orbitals
to collaborate with, and they may earn income from various sources
based on the agreements in place. Users are charged for the storage of
data when it is not being actively used, as well as for accessing the
data. However, there is no charge for uploading the data initially, in
order to discourage users from using the system.

Audit and Disqualification:
Data nodes are required to consistently and dependably store the data
that is allocated to them. In order to guarantee this, Orbitals conduct
sporadic checks of stored data. If a node fails these audits, it might be
disqualified, leading to the loss of stored data and retained cash, and
no more payouts from the network.

Supported Operations:
Data nodes support three main operations: get, put, and delete. Each
operation requires a piece ID, an Orbital ID, a signature from the
corresponding Orbital instance, and a bandwidth allocation.

Put: Stores data with an optional TTL, ensuring that any subset of
the data can be retrieved with a get operation until the data is
deleted or its TTL expires.
Get: Retrieves stored data as long as it remains valid under its TTL
or until it is deleted or removed during garbage collection.
Delete: Removes data when instructed by Orbitals or during
scheduled garbage collection based on a probabilistic data
structure known as a Bloom filter, which identifies data that is no
longer needed.

Open Source Availability:
The software for data nodes is made available as open source, enabling
universal participation in the network and the ability to contribute to its
development and safeguarding.

This innovative configuration maximizes the functionality of data nodes,
guaranteeing dependable data storage while offering explicit
motivations for engagement and adherence.

4.4 Establishing Node Identity

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Identity Generation and Certificate Creation:
During the initial configuration process, every member in the NodeGrid
system, whether it is a storage node, Orbital, or Sconnect, creates its
own distinct identity and corresponding certificates to ensure safe
network activities. This procedure entails generating a certificate
authority (CA) that is unique to each node. It necessitates the use of a
public/private key pair and a certificate that is signed by the node
itself.

Certificate Authority Management: It is advisable to keep the
private key for the certificate authority in a highly secure cold
storage to avoid any unwanted access or compromise of the key.
Ensuring strong operational security for the CA's private key is
essential since any breach requires a full re-issuance of the node's
identity, which might impede network operations.

Node Identification and Proof of Work:
The node ID of each node is generated by hashing its public key, using
a technique similar to that of S/Kademlia. The node ID functions as a
validation mechanism for entering the network. SILO's proof of work
algorithm differs from the typical Bitcoin proof of work by emphasizing
the discovery of trailing zero bits in the hash result. This approach
requires significant computing resources and incurs high costs,
thereby mitigating the likelihood of Sybil attacks.

Leaf Certificates and Key Rotation:
Nodes also produce a revocable leaf certificate and key pair, which are
authenticated by the node's Certificate Authority (CA). The leaf
certificate serves as a means of daily communication and has a signed
timestamp to monitor its current validity.

Certificate Renewal and Compromise Handling: If a breach occurs,
the node has the ability to generate a new leaf certificate that
includes an updated timestamp, which is then monitored by
Orbitals. Peers will acknowledge the recently issued leaf certificate
and refuse connections that try to utilize older, obsolete
certificates. A streamlined exception occurs when the leaf
certificate and the CA certificate have the same timestamp, hence

www.larissa.network | www.silos3.com

Design Constraints of SILO2 reducing the need for further timestamp verification in such
instances.

This method guarantees that every node in the network maintains safe
and verifiable identities, which prevents impersonation and improves
the overall security of the network.

4.5 Direct Node Communication
The SILO network employs a DRPC protocol, which is an open-source,
gRPC-like communication protocol, for inter-node communication. The
purpose of this protocol is to provide both safe and efficient
communication across the network, establishing a strong basis for
interactions between nodes.

Protocol Security and Structure:
DRPC utilizes a hierarchical protocol stack including of Transport Layer
Security (TLS) and the Noise Protocol Framework in IK mode. These
protocols are implemented over either TCP or QUIC, which is a protocol
that works over UDP. These layers have specific functions:

TCP/QUIC: Ensure the dependable and sequential transmission of
data over the network, guaranteeing that packets are received in
the proper sequence without any loss.
TLS/Noise: Enhance security by using encryption and
authentication measures. TLS is used for providing extensive
security measures, such as mutual authentication, while Noise may
be utilized in situations that prioritize reduced latency and do not
need forward secrecy to be of utmost importance.
DRPC:Enables the consolidation of several communication channels
into a single connection, while offering a user-friendly interface for
developers.

Authentication and Proof of Work:
By using secure communication protocols such as TLS or Noise, every
node may verify the authenticity of the peer it is interacting with. This
is done by validating the certificate chain and hashing the public key of
the peer's certificate authority. This procedure enables nodes to build
confidence and evaluate the computational effort (proof of work)
linked to a peer's node ID, which is defined by the quantity of trailing
zero bits in the hash.

In order to maintain network security and mitigate Sybil attacks,
Orbitals have the ability to establish a minimum proof of work
prerequisite for nodes to successfully undergo audits. The threshold
may be modified gradually to improve the robustness of the network

www.larissa.network | www.silos3.com

Design Constraints of SILO2 and guarantee that only nodes with enough processing resources are
allowed to participate.

The implementation of this organised communication protocol
guarantees that SILO maintains a network environment that is both
safe and efficient, while also being capable of scaling to accommodate
a larger number of network users. This protocol facilitates dependable
interactions between all participants in the network.

4.6 Dynamic Node Discovery
Within the SILO network, storage nodes are often linked via diverse
consumer internet services, normally situated behind routers that
possess dynamically altering IP addresses. This poses a difficulty in
regularly identifying and establishing communication with these nodes
over a prolonged period. In order to address this issue, SILO utilizes a
dynamic node discovery system that is specifically built to monitor
and update the position of nodes based on their distinct identities,
much to how DNS functions for the public internet.

Every Orbital in the SILO network is furnished with a node discovery
cache that retains vital information necessary for communication with
storage nodes. This cache contains data such as the node's storage
capacity, current IP address, and other important metadata. The
decentralized caching mechanism allows the SILO network to
effectively identify and communicate with storage nodes, allowing the
seamless storage and retrieval of data as required.

When a storage node enters the network, it establishes communication
with every Orbital on its trust list in order to officially declare its
existence. The Orbital validates the connection, confirming that the
node is accessible and capable of retaining data. After verification, the
Orbital updates its node discovery cache with the node's current
status and metadata, guaranteeing that future data storage activities
have access to the most recent information.

In order to ensure the accuracy of the data for active nodes, each
storage node transmits a periodic signal, known as a "heartbeat," to the
Orbitals it is registered with. This signal is usually sent every hour. The
purpose of this heartbeat is to verify the continuous availability of the
node and to communicate any changes made to its configuration. If a
node fails to transmit its heartbeat within the designated time period,
the Orbital system will make an effort to establish communication with
the node. If the node becomes inaccessible, the Orbital system will
designate it as inactive, so halting any more data assignments and
initiating any required data recovery procedures.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 The use of this dynamic method for node discovery guarantees that
the SILO network maintains its resilience and responsiveness, allowing
it to adjust to fluctuations in network circumstances and uphold a
superior degree of service dependability. SILO effectively manages its
distributed storage network and offers reliable data storage solutions
by consistently updating the status of nodes.

4.7 Data Redundancy
SILO employs Reed-Solomon erasure coding to guarantee data
durability and minimise the possibility of data loss caused by node
failures or other disturbances. This method is efficient in spreading
data across several nodes, enabling data retrieval even in the event of
node disconnection or data corruption. SILO employs four critical
parameters, namely u, v, w, and x, in the Reed-Solomon coding scheme
for each stored data item. It is important to note that the values of u, v,
w, and x follow the condition u ≤ v ≤ w ≤ x.
In this setup:

'u' denotes the least quantity of fragments necessary to restore the
initial data.
'x' represents the aggregate quantity of items produced during the
encoding procedure.
The threshold 'v' is the minimum number of available pieces at
which SILO will trigger a repair operation to avoid any potential data
loss. This guarantees that there will always be a minimum of u
pieces accessible. This threshold ensures the maintenance of a
constant degree of redundancy and data availability.
The variable 'w' reflects the ideal quantity of components required
to provide the specified level of endurance without causing costly
repairs or retaining excessive data. During the process of uploading
or fixing data, after the successful storage of certain components
on the website, any more uploads up to a certain limit, denoted as
x, are stopped in order to improve efficiency and efficiently use
resources.

This redundancy method enables SILO to successfully manage sluggish
or momentarily down nodes. The system has the ability to handle a
maximum of x − w nodes that have a poor response time during
uploads. This improves the overall performance of the network by
minimising the negative effects of these extended delays. In addition,
SILO has the capability to handle the offline status of up to w − v nodes
without requiring quick repairs, thereby offering a strong safeguard
against data loss. The distinction between the letters "v" and "u"
provides an extra level of security, guaranteeing the preservation of
data integrity even while undergoing repair procedures.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 SILO achieves optimal data durability and network efficiency by
meticulously setting these parameters. This strategy decreases the
need for frequent repairs and limits the additional space required for
storage, all while maintaining a high level of dependability and
efficiency. To get further information on the selection of Reed-Solomon
parameters and data repair procedures in situations when durability
diminishes, refer to sections 7.3 and 4.14.

4.8 Organized Data Management

SILO facilitates improved file management and offers the capability to
include information for each item saved on the network, hence
providing extra context. This feature has resemblance to the "object
metadata" feature offered by Amazon S3 and the "extended attributes"
present in most POSIX-compatible systems.

Within the SILO system, users have the ability to provide custom key-
value pairs to any item, enabling them to store supplementary data
that is relevant to their information. The metadata is kept along with
other object-specific information, such as storage location and access
rules, which allows for easy access and facilitates more effective data
retrieval and administration. SILO enables several use cases by
providing support for metadata, allowing for tasks such as basic file
descriptions and intricate data classification and indexing.

4.8.1 Metadata Management for Objects

4.8.2 Segmenting Objects
Our revised method incorporates precise terms to prevent any
ambiguity that may have arisen in prior editions. In the past, the word
"shard" denoted fragments kept on separate nodes, while "sharding"
denoted the act of dividing a file into smaller segments for more
convenient management. The use of erasure coding in previous
versions led to ambiguity in this nomenclature. To provide further
clarification, we now designate this procedure as "segmenting," and the
main partition of an object's data flow is referred to as a "segment."

A segment denotes a significant fraction of the data included inside a
file. If the file is sufficiently compact, it may include just a single
segment. An "inline segment" refers to the situation when the size of a
segment is lower than the metadata needed to store it on the network,
resulting in the data being saved along with the information.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 When dealing with bigger files, the data is divided into many "remote
segments." Partitioning data in this manner offers a multitude of
advantages pertaining to security, privacy, efficiency, and accessibility.
Distributed storage systems, such as Google File System (GFS) and
Lustre, divide portions of big files (such as films) among several
network nodes. This helps evenly disperse the bandwidth burden and
prevents any one node from becoming a bottleneck. This strategy not
only promotes data privacy and security, but also helps overall network
speed by enabling simultaneous data transmission, comparable to the
capability seen in peer-to-peer networks such as BitTorrent.
Furthermore, by the process of standardising the size of segments, we
can achieve a higher level of consistency in storage among nodes. This
ensures that storage needs are evenly distributed and enables more
effective retrieval of data.

4.8.3 Segments Defined as Stripes
Accessing a particular subset of a bigger dataset is often essential in
many situations. Some file formats, such those used for films or disk
pictures, often provide "seeking," which allows for reading just a
specified portion of data. This capacity is crucial in many applications,
such as audio CDs, where the decoding of short segments is vital to
effectively support operations.

In order to provide selective access, we establish a "stripe" as a smaller
portion of a segment. Stripes are often small, usually a few kilobytes in
size, which enables efficient management of data and precise access.
Encryption in our system takes place at the border of encryption
blocks, which are tiny multiples of stripes. Meanwhile, erasure encoding
is used to improve the durability and integrity of data, and it is applied
to each individual stripe.

Our use of authenticated encryption results in a little additional cost
for each encryption block. Consequently, opting for somewhat bigger
encryption sizes may be advantageous in minimising this cost.
Nevertheless, due to the fact that audits are performed at the stripe
level, it is crucial to maintain minimal stripe widths in order to reduce
the amount of bandwidth used during audits. This meticulous
equilibrium guarantees that data is both safe and kept effectively, while
keeping the resources needed for frequent audits and verifications at a
minimum.

For those acquainted with the zfec library, our notion of a stripe
roughly corresponds to what zfec denotes as a "chunk" in its filefec
mode, demonstrating the interchangeable use of terminology across
many systems and situations.

www.larissa.network | www.silos3.com

Design Constraints of SILO2
As mentioned before in Sections 3.4 and 4.7, the use of erasure codes
is crucial for ensuring data persistence, especially in decentralized
networks where storage nodes may be unreliable. Erasure coding is a
technique that enables the recovery of data even if certain sections of
it are missing. This is especially beneficial for preserving data integrity
in a network with several remote nodes.

Our approach utilises erasure coding at the stripe level. In an erasure
code setup given by parameters (k, n), a stripe is partitioned into n
erasure shares. For instance, when using a setup with k = 20 and n = 40,
it implies that the initial stripe is divided into 40 distinct erasure
shares. A minimum of 20 out of the 40 shares is required to restore the
original stripe, ensuring that the system can withstand the loss or
corruption of up to 20 shares without any loss of data. As a result, each
erase share would be one twentieth of the size of the original stripe.

Encoding data stripe-by-stripe has several advantages. It allows for the
extraction of tiny sections from big data segments without requiring
the complete download of the full segment. This feature is particularly
beneficial for applications that need rapid retrieval of certain data
segments, such as video streaming or databases that provide partial
reads or searches. Moreover, this approach enables the seamless
transmission of data into the network in real-time, eliminating the need
for prearrangement and enhancing the efficiency and adaptability of
the storage procedure.

To get a comprehensive examination of how modifying the parameters
of erasure codes, such as tweaking k and n, affects the availability and
redundancy of data, please see Section 7.3.3. This section offers
valuable information on how to optimise these settings in order to
achieve a balance between storage efficiency and data dependability.

4.8.4 Converting Stripes into Erasure Shares

Design Constraints of SILO24.8.5
Consolidating Erasure Shares into
Pieces
Considering that stripes are already quite diminutive data units, the
erasure shares generated from these stripes are considerably more
little. Handling each of these erasure shares separately would need a
substantial quantity of information, resulting in an inefficient system. In
order to address this issue, we use a tactic in which all erasure shares
that have the same index are merged together to form a unified entity
known as a piece.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 In a standard erasure coding configuration denoted by (u,x)(u, x)(u,x),
where uuu represents the minimum number of pieces needed for
reconstruction, and xxx represents the total number of pieces, each
erasure share is assigned an index. Each portion of a stripe will
consistently generate the corresponding portion when encoded.
Instead of individually managing each of these shares, we consolidate
all shares with the same index into a single unit. In a (u,x) scheme, there
are xxx pieces, and each piece iii consists of all the erasure shares with
the same index iii. Therefore, each erasure share corresponds to
1u\frac{1}{u}u1 of a stripe, and each piece corresponds to 1u\frac{1}
{u}u1 of a segment. To reconstruct the whole segment, only uuu pieces
are needed.

When a new upload occurs, the Orbital generates a unique root piece
ID. The root piece ID is kept secret inside the Sconnect system and is
used to generate a unique piece ID for every storage node. The piece
ID is produced by applying a Hash-based Message Authentication
Code (HMAC) to the root piece ID and the ID of the individual node.
This technique guarantees that storage nodes are unable to readily
discern which components are associated, hence bolstering data
security.

In order to enhance data security and facilitate management, the parts
are arranged according to their respective Orbital ID. If two orbitals
have the same piece ID, they are regarded to be separate from one
other. Each Orbital would presume that the parts, albeit having the
same ID, had distinct data and have independent lifecycles. This
technique efficiently mitigates data conflicts and guarantees smooth
data administration across many Orbitals.

4.8.6 Managing Data with Pointers
In order to successfully recover a distant segment from the network,
the data owner must possess knowledge of the segmentation process
and the specific storage locations of each individual piece. The data is
stored in a data structure called a pointer.
A pointer includes several key elements:

Storage Node Information: Information on the specific nodes that
are responsible for storing different parts of the segment.
Encryption Data: Information required to decrypt the data upon
retrieval.
Erasure Coding Parameters: Specifications about how the data has
been erasure coded, including the number of pieces generated and
how many are needed for reconstruction.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Repair Thresholds: Defined limits that trigger a repair process when
redundancy drops below a certain level. This helps maintain data
integrity and availability.
Repair Success Criteria: The required number of pieces that must
be restored for a repair to be considered successful.
Inline Segment Data: For inline segments, the pointer contains the
actual binary data rather than information about piece locations.

In past versions, the system used two distinct data structures, referred
to as frames and pointers, to handle these particulars. Nevertheless, in
the present iteration, these structures have been merged into a
solitary, cohesive entity referred to as a pointer. This simplicity
improves efficiency by lowering the intricacy of maintaining data
locations and information throughout the network, making both the
storage and retrieval operations more streamlined.

4.9 Metadata Management
Within the Silo network, the metadata storage system has the main role
of storing pointers, which are crucial for the identification and
administration of data across the decentralized storage network. These
pointers serve as references, providing guidance to the network on the
location and management of data items.

An uncomplicated method for integrating metadata storage is to let
each user to use their desired and reliable database. Users have the
option to choose from a range of database systems, including
MongoDB, MariaDB, Couchbase, PostgreSQL, SQLite, Cassandra,
Spanner, or CockroachDB. Users, particularly those who handle
substantial quantities of data, may take use of dependable backup
solutions to save their metadata due to this adaptability. Nevertheless,
this approach has both benefits and drawbacks.

Challenges of Using Traditional Database Systems:

Availability: The accessibility of a user's data is contingent upon the
presence and functionality of their selected metadata server.
Although Cassandra, Spanner, and CockroachDB are very
dependable distributed solutions that provide good availability,
effectively administering these systems involves significant work.
Furthermore, the absence of a single metadata service does not
impact the other parts of the Silo network, guaranteeing that the
network continues to function even if certain nodes experience
periods of inactivity.
Durability: Data loss may occur if the metadata server has a major
failure and there are no adequate backups in place.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 As metadata contains encryption keys, losing it results in the loss
of access to the stored data. In order to reduce this risk, it is
possible to regularly create backups of metadata inside the Silo
network itself, hence minimising the quantity of crucial data that
must be kept elsewhere.
Trust: Users are required to place their faith in the metadata server
to maintain the integrity and security of their metadata. This
creates a dependence on other systems or services.

Benefits of Allowing User-Controlled Metadata Storage:
Control: Users maintain full authority over their data. This
decentralisation eradicates the risk of a single point of failure and
empowers users to choose their metadata storage, therefore
achieving a balance between different trade-offs based on their
individual preferences. Similar to the decentralized social network
Mastodon, this method enables users to operate their own
metadata services, guaranteeing independence and durability in
the face of centralised breakdowns.
Simplicity: By using current database technologies, the Silo network
may bring a working product to the market more quickly, without
the need to spend years constructing Byzantine-fault tolerant
consensus systems for information storage. This approach avoids
the performance and complexity trade-offs associated with such
systems.
Coordination Avoidance: Users only need to synchronise with other
users on their designated node or server. Users with high demand
may create their own nodes, which helps to decrease the need for
cooperation and improves performance. Users have the option to
choose databases that have lower consistency requirements, such
as Highly Available Transactions, which helps to reduce the need for
coordination among their nodes.

Silo offers a versatile and effective solution for decentralized storage
management by enabling users to handle their information using a
database of their own. This technique also facilitates the development
of future improvements and novel solutions that might further increase
the optimization of metadata management inside the network. To get
more understanding of our present methodology and upcoming
strategies for metadata management, please refer to Appendix A and
Section 6.2.

4.10 Orbital
The Orbital Node, sometimes referred to as the Orbital, functions as a
centralised hub responsible for overseeing metadata inside the Silo
network. Users establish accounts on a designated Orbital instance,

www.larissa.network | www.silos3.com

Design Constraints of SILO2 which serves the purpose of storing file information, overseeing data
access rights, monitoring the dependability of storage nodes, restoring
data when redundancy drops below acceptable thresholds, and
facilitating payments to storage nodes on behalf of the user. An Orbital
instance is not restricted to a solitary server; it may be implemented as
a group of servers backed by a scalable, reliable database to guarantee
optimal availability.

The Silo network utilises a thin-client approach in which the
responsibility of managing file location information is assigned to the
Orbital, which efficiently oversees data ownership. The configuration
allows the Orbital to accommodate a diverse range of client
applications, necessitating a substantial amount of infrastructure
resources and ensuring a high level of availability, particularly when
handling an active file set. Similar to other elements of the Silo network,
the Orbital service is created as open-source software, enabling any
person or organisation to operate their own Orbital and connect to the
network.

The Orbital is primarily built as a resilient and dependable application
server that encompasses a secure database solution, such as
PostgreSQL, Cassandra, or any other appropriate system selected for
managing metadata. Users authenticate themselves into a designated
Orbital using their account credentials. The data available inside one
Orbital instance is not immediately accessible within another. However,
potential future upgrades may provide the ability to export and import
data across different Orbitals.

Crucially, the Orbital does not receive data that is not encoded and
does not retain the keys used for encryption. The only information it
may provide to other entities is metadata, including the presence of a
file, its estimated magnitude, and use trends. This design decision
guarantees the preservation of client confidentiality and the client's
complete authority over data access, while the Orbital assumes the
duty of ensuring file availability on the network.

Users have the option to use Orbitals that are operated by third-party
entities. Due to their lack of data storage and absence of encryption
key access, these Orbitals provide a security paradigm that surpasses
that of conventional data centres. The reputation and selection of
storage nodes by Orbitals are enhanced by network effects. As the
reputation data expands, it gains more value, hence establishing a
compelling economic motivation for sharing infrastructure and
information inside an Orbital.

Service providers have the option to run public Orbitals, which enable

www.larissa.network | www.silos3.com

Design Constraints of SILO2 developers to assign confidence to a particular Orbital for data
placement on the network. This is similar to how trust is established in
a conventional object store, but with less risk involved. Anticipated
future upgrades will bring about diverse arrangements and allocations
of duties between client applications and Orbitals, enabling the
incorporation of differing degrees of reliance.

An Orbital instance comprises several key components:

A comprehensive node discovery cache (see Section 4.6)
A metadata database indexed by encrypted paths for each object
(see Section 4.9)
An account management and authorization system (see Section
4.12)
A storage node reputation, statistics, and auditing system (see
Section 4.13)
A data repair service (see Section 4.14)
A storage node payment service (see Section 4.16)

Although the current implementation of several Orbitals represents a
notable improvement compared to previous versions, it is but a single
stage in the continuous process of decentralisation. There are future
intentions to decentralise further components of the Silo network.

4.11 Data Encryption
The encryption system used in the Silo network ensures data
confidentiality and integrity by using authenticated encryption. It
supports both AES-GCM and the Salsa20 and Poly1305 combination,
which is known as "Secretbox" by NaCl [62]. Authenticated encryption
is selected to ensure that any manipulation of the data may be
detected, hence ensuring a dependable guarantee of data integrity.

Data encryption is performed in discrete units called blocks, which are
usually made up of tiny groups of stripes. It is suggested that each
block should have a size of 4KB or less [63]. While each encryption
batch inside a segment uses the same encryption key, separate
segments may use distinct encryption keys. The nonce for each
encryption batch must increase consistently from the preceding batch
inside the segment, and if the nonce counter reaches its maximum
value, it resets to zero. In order to mitigate the risk of reordering
attacks, the starting nonce for each segment is systematically
established using the segment number. In situations when many
segments are being uploaded simultaneously, such with Amazon S3's
multipart upload capability, the initial nonce for each segment is
determined by combining the file's initial nonce with its segment

www.larissa.network | www.silos3.com

Design Constraints of SILO2 number. This encryption method guarantees that the storage nodes
are unable to access the content, hence preserving data secrecy. The
data owner, who has the encryption key, maintains total control over
the data.

Furthermore, the data channels are encrypted to enhance security.
Like the BIP32 hierarchical deterministic wallet standard [44], the
encryption used here is both hierarchical and deterministic. Each
component of the route is encrypted individually. This procedure
entails the identification of a confidential value for each segment of the
route. The value is created in a recursive manner using an HMAC
function that relies on the secret of the preceding segment.

For example, if we have an unencrypted route consisting of
components p1, p2,..., pn, and the user selects an initial root secret s0,
the next secrets are defined recursively as si=HMAC(si−1,pi). A
deterministic derivation of a key K(si) may be obtained from each
sis_isi . Each encrypted route component, ei , is generated by
encrypting the path component, pi , using the key acquired from the
previous path component, si−1 . This encryption method enables users
to provide access to specified sub-pathways while keeping parent
paths and irrelevant paths hidden, hence boosting privacy.

Path encryption is an optional feature that is automatically activated.
Nevertheless, when used, it may create complexity in sorted path
listings since items are arranged based on their encrypted path names.
This sorting algorithm is predictable, meaning that it will always provide
the same output for a given input. However, it may not be practical or
beneficial when client applications need unencrypted pathways. Users
may choose to deactivate route encryption. When path encryption is
off, only the user's chosen Orbital can see unencrypted paths. The
storage nodes are kept oblivious of the data's path and information.

4.12 Access Control and Authorization
Encryption protects the confidentiality and integrity of data by
preventing unwanted access and detecting tampering. However,
authorization methods are necessary to prevent illegal alterations and
regulate access. Only those with the appropriate authority should have
the ability to upload, remove, or modify files. On the other hand, it is
important to limit the ability of unauthorised users to carry out these
actions. Authorization controls both data alterations and access to
metadata operations. Users verify their identity via their corresponding
Orbital, which determines their privileges for different activities
according to their authorization settings.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 The first method we use for metadata permission makes use of
macaroons [64], which are bearer tokens that provide versatile and
detailed access control. Macaroons are very advantageous since they
provide decentralized delegation, enabling numerous entities to
impose limitations on a token without the need of a single authority to
verify such limits. This approach allows us to enforce precise
restrictions for giving or denying access, such as restricting activities
to specified encrypted routes or providing read-only or append-only
access. Every user account is linked to a primary macaroon, and all
actions must adhere to the limitations specified in the macaroon's
disclaimers.

Our solution offers the flexibility to add expiry dates and revocation
tokens to macaroons, allowing users to programmatically revoke
access as necessary. This feature is essential for preserving security
and guaranteeing that obsolete or hacked tokens do not result in
unlawful entry.

Our authorization approach is based on encrypted pathways, since
Orbitals only handle encrypted paths and limit Orbital actions. In order
to facilitate delegation for certain route prefixes, it is crucial that the
distinctions between path components remain discernible even after
the process of encryption. This requirement may restrict the
functionality or performance for path delimiters that are not the
conventional forward slash.

After a Sconnect client is successfully authenticated with an Orbital,
the Orbital grants permission and generates signatures for any future
activities involving storage nodes. This includes tasks such as allocating
bandwidth, as explained in section 4.17. The Sconnect client is required
to get legitimate signatures from the Orbital for every transaction
involving storage nodes. Each action performed on a storage node
requires a distinct Orbital ID and its matching signature. Storage nodes
will refuse any actions that do not have the appropriate Orbital ID
signature, guaranteeing that one Orbital cannot unintentionally or
maliciously impact data controlled by another, unless specifically
authorised by the data owner's Orbital.

Our early approach lacks protections to prevent unexpected file
deletions or rollbacks initiated by a possibly malicious Orbital. The
foundation of our trust model is based on the idea that the user's
Orbital operates with integrity, ensuring the proper management and
repair of data. If an Orbital is seen untrustworthy, it is improbable that
it would carry out dependable data repairs for the customer.
Subsequent upgrades may provide stronger methods for identifying
and addressing such situations, similar to the mechanisms used in
systems like as SUNDR, SiRiUS, or Plutus [65-67], in order to enhance

www.larissa.network | www.silos3.com

Design Constraints of SILO2 protection against unwanted Orbital activity.

4.13 Data Auditing for Integrity
Ensuring the accuracy of data storage and provision by nodes in a
decentralized storage network is crucial for sustaining the network's
dependability, especially considering that these nodes operate
autonomously and may not always be trustworthy. Audits are
conducted to verify that nodes are retaining the data they claim to
possess and are operating as intended. During the audit procedure, an
auditor, usually an Orbital, initiates a challenge to a storage node, which
is then required to provide evidence that it has the requested data in
its original state.

Merkle tree proofs were used for audits in some distributed storage
systems, such as older versions of SILO. This approach entails creating
barriers and anticipated reactions throughout the storing process,
which serve as evidence of retrievability. The use of a Merkle tree
reduces the amount of information needed to hold these challenges
and replies because of its efficient hierarchical hashing structure.
Nevertheless, Merkle tree-based proofs are classified as "limited
schemes," requiring pre-generation of audit difficulties. Storage nodes
may take advantage of this restriction by optimising storage capacity
by the selective tracking of predicted responses instead of recording
all of the actual data.

In order to address the constraints of pre-determined tasks, we have
included Reed-Solomon erasure coding to enable more flexible and
resilient audits. Reed-Solomon coding eliminates the need for pre-
generated obstacles in audits. Instead, they use erasure coding to
rebuild data in real-time, allowing for verification without requiring all of
the original data bits. This method enables the possibility of
conducting random audits, in which a sample of data is chosen at
random and examined for correctness.

The audit procedure starts by randomly picking a segment of data. The
Orbital subsequently asks the deletion of certain data segments from
all relevant storage nodes. The system employs algorithms such as
Berlekamp-Welch error correction to examine these shares. If the data
that is returned is identical to the anticipated output, then the audit is
said to be successful. If any inconsistencies are detected, the node
may be marked as non-compliant for its failure to maintain data
integrity.

Nodes that fail to reply, offer inaccurate data, or become unresponsive

www.larissa.network | www.silos3.com

Design Constraints of SILO2 will be subjected to further examination. When a node is momentarily
unable to answer, maybe because it is being overloaded with requests,
it enters "containment mode." During this state, the Orbital system
keeps trying to do the audit on the node until it either succeeds, fails,
or is tagged as offline because it has been unavailable for an extended
period of time.

The reputation system logs audit findings, including failures, latency
measures, throughput, and overall responsiveness. This continuous
assessment aids in sustaining a superior level of service and
guarantees that only dependable nodes stay operational inside the
network. Systematic, indiscriminate audits conducted on all data
provide thorough coverage and instil trust in the accuracy of the data,
eliminating the need to inspect each byte or file separately.

To get further information on the frequency of audits and the statistical
guarantee of data accuracy, please see Section 7.2.

4.14 Data Repair Mechanism
In a decentralized storage network, the data's availability is of utmost
importance, particularly when storage nodes go down, resulting in the
temporary or permanent inaccessibility of the stored bits. In order to
ensure the integrity and availability of data, it is essential to rebuild and
replace any missing parts if the number of accessible pieces for a
segment drops below a preset threshold, represented as m.

When the Orbital detects that a storage node is offline, it designates
the data pieces stored on that node as missing. The system then
consults the node discovery cache to ascertain the most current state
of storage nodes. When a storage node that was recently connected to
the network is discovered to be disconnected, the Orbital system does
a search in a reverse index located in the metadata database. This
search is done to determine all the references linked to the data
segments that were stored on that particular node.

If a segment falls below the necessary redundancy level, meaning it has
less than m pieces, the Orbital will begin a repair operation. This
process entails retrieving the already available fragments of the
segment from the remaining nodes and recreating the missing data by
using Reed-Solomon erasure coding. After the rebuilding process is
finished, fresh components are created and transferred to new storage
nodes in order to restore the redundancy of the segment. Once the
new parts are uploaded successfully, the metadata pointer is changed
to accurately represent the changes. This update guarantees that the
data remains easily available and appropriately safeguarded.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Network users have the flexibility to choose their preferred degree of
durability by selecting an Orbital. This choice may affect the price and
other operational aspects of the network. The chosen degree of
durability, together with the findings from continuous audits, guides the
selection of Reed-Solomon erasure code parameters for both new and
repaired files. It also establishes the thresholds for successful uploads
and the need for repairs. To get further information on these
computations and user inputs, please see Sections 3.4 and 7.3.

It is necessary to emphasise that the uninterrupted functioning of the
Orbital is vital for this healing process. In the case of an Orbital system
failure, repair operations will be suspended, potentially leading to data
loss as a result of node turnover within the network. This is comparable
to the value storage and republishing procedure in Kademlia, where the
owner must stay connected to guarantee the availability of data.

Although the audit and repair procedures need a substantial amount of
incoming bandwidth because of the extensive data needed for audits
and reconstruction, the outgoing bandwidth is very little as only the
newly rebuilt components are sent. The uneven distribution of
bandwidth utilisation makes hosting providers that give free incoming
bandwidth particularly attractive to customers that run Orbitals, as it
helps to decrease overall operating expenses related to data upkeep.

4.14.1
Minimising Repair Overhead with
Piece Hashes
Restoring data in a decentralized storage network is a crucial but
demanding task that requires significant resources. It necessitates a
significant amount of bandwidth, memory, and computing power,
frequently burdening a single storage operator with a substantial
workload. In order to enhance network efficiency and save expenses, it
is essential to limit the use of resources during the repair procedure.

When it comes to segment repair, the objective is to minimise the
bandwidth use required for data recovery. This refers to the act of
downloading just the essential amount of components needed to
reassemble a section. However, using merely Reed-Solomon erasure
coding for mistake correction is inadequate when only a portion of
redundant parts is accessible, since it does not intrinsically verify the
integrity of individual pieces.

In order to overcome this constraint, we have developed a technique
that utilises piece hashes. Every item kept on a storage node is

www.larissa.network | www.silos3.com

Design Constraints of SILO2 accompanied by a cryptographic hash, which serves as a unique
fingerprint for its contents. Furthermore, a validation hash, which serves
to authenticate the collection of all piece hashes, is kept in the pointer
metadata.

During a repair operation, the piece hashes are first fetched from the
storage nodes and then compared to the validation hash in the pointer.
This stage guarantees that all components used for reconstruction are
accurate and unaltered. By validating the integrity of each individual
piece prior to commencing a complete download, the repair process
may securely use the minimum number of pieces required to
reassemble the data, without the need for further redundancy.

This strategy not only guarantees the correctness of the data but also
preserves vital network resources by minimising needless data
transmissions. The utilisation of piece hashes greatly improves the
effectiveness and dependability of the data repair procedure in the
network.

4.15 Node Reputation Management
Robust reputation systems are essential in decentralized storage
networks to ensure dependability and data integrity of storage nodes.
This method facilitates the identification and elimination of
untrustworthy or malevolent individuals from the network, hence
boosting the overall security and resilience. The reputation system is
structured based on four fundamental elements: evidence of work, first
evaluation, filtration, and preference.

Every storage node is required to do a proof of work in order to
generate its own identity. This first proof serves as a preventive
measure against Sybil attacks, in which an attacker may generate
several counterfeit identities to disrupt the network. The complexity of
this proof is determined by the Orbital operator and may be modified
gradually. Nodes that do not fulfil the necessary proof of work are not
qualified to store fresh data, guaranteeing that only dedicated
participants may join the network.

Storage nodes that are newly introduced are subjected to a thorough
evaluation procedure to determine their level of dependability. During
this timeframe, nodes undergo testing by being included into a
reduced amount of data storage activities, hence avoiding potential
risks while collecting performance data. This procedure guarantees
that only nodes with demonstrated stability and performance are
thoroughly included into the network. After successfully completing
the vetting phase, a node becomes qualified for standard data storage

www.larissa.network | www.silos3.com

Design Constraints of SILO2 and is issued a certification by the Orbital to certify its status.
The reputation system consistently monitors the behaviour of nodes in
order to identify and exclude nodes that are not dependable. Nodes
may be excluded due to excessive audit failures, failure to provide data
promptly, or inadequate uptime maintenance. Nodes that have been
disqualified are removed from the active storage pool, and whatever
data they were holding is transferred to nodes that are more
dependable. Disqualified nodes are required to undergo the vetting
process again in order to restore confidence, hence discouraging any
irresponsible or malicious actions.

In order to enhance data storage efficiency, the system incorporates a
preference mechanism. Nodes are evaluated according to
characteristics such as velocity, dependability, geographical position,
and the amount of time they are operational. The purpose of this data
is to determine the priority of nodes for future data storage activities,
giving preference to nodes with superior performance while still
ensuring that all eligible nodes have some level of involvement. This
strategy facilitates the equitable distribution of storage duties and
safeguards against concentration, so guaranteeing a decentralized and
robust network.

At first, each Orbital manages node reputations separately, which
means that a node that has been rejected by one Orbital may continue
to take part in others. Over time, the reputation system strives to grow
increasingly interconnected, providing a thorough assessment of each
node's performance across the whole network. The implementation of
this comprehensive strategy for reputation management ensures the
maintenance of stringent requirements for the dependability of data
storage and the security of the network.

4.16 Payment Systems
The payment mechanism in the SILO network is specifically intended
to streamline transactions among clients, storage nodes, and Orbitals,
guaranteeing seamless operations and equitable remuneration for used
resources. Customers that store data on the network remunerate the
Orbital for handling their data, which thereafter allocates funds to
storage nodes according to the storage capacity and bandwidth they
provide.

Customers have the option to choose from a range of payment
methods, including bitcoin, credit cards, or invoicing, providing them
with freedom in how they make payments. Nevertheless, the storage
nodes are remunerated with the SILO currency, which is derived from
the Larissa blockchain. SILO serves as the storage layer of the Larissa

www.larissa.network | www.silos3.com

Design Constraints of SILO2 blockchain, enabling a decentralized and safe payment system. This
decision utilises the advantages of blockchain technology, such as
transparency and security, while being customised to meet the unique
requirements of the network.

Conventional decentralized storage systems often depend on fixed
contracts for payments, where data is stored for a certain duration,
such as 15 or 30 days, until extended. The SILO network deviates from
this concept by abstaining from using set contracts for storage
periods. Conversely, it presupposes that data will be retained forever
unless explicitly stated differently. This strategy is more suitable for
situations when indefinite storage is preferred, hence minimising the
possibility of unforeseen data loss caused by contract termination.

Storage nodes get compensation for both storing data and providing
download bandwidth. Payments are determined by the quantity of
data saved and the amount of bandwidth used, usually on a monthly
basis. Nevertheless, the storage nodes do not get compensation for
the first data upload, hence promoting effective data management and
discouraging superfluous data uploads. Nodes that have a continuous
record of being up and reliable are chosen, and there is a motivation for
storage nodes to be active in the network for long durations. In order to
substantiate this claim, Orbitals have the ability to retain a percentage
of a node's profits until it has shown its ability to consistently provide
dependable service for a certain duration, often six months or more. If
a node departs from the network prematurely or fails to reach the
required level of dependability, the Orbital has the opportunity to
retrieve the monies that were being kept.

Storage nodes are anticipated to rapidly acknowledge delete requests
from Orbitals in order to prevent the accumulation of unnecessary
data. If a node fails to execute a delete command, it will not be
compensated for the storage it is unnecessarily using and may finally
remove the data via a trash collection process. This approach
guarantees that only operational and trustworthy nodes get
compensation, hence enhancing the efficiency and cost-effectiveness
of the network.

Orbitals continuously monitor the storage and bandwidth utilisation of
each node throughout the month, keeping track of daily records to
ensure precise accounting. After each billing cycle, money are
collected and allocated to the storage nodes appropriately. In addition,
Orbitals generate income by levying fees on customers for a range of
services, including auditing, data restoration, and metadata storage.
This ensures the long-term viability of the network and covers
operating expenses.

www.larissa.network | www.silos3.com

Design Constraints of SILO2
A crucial component of our approach is precisely monitoring the use of
network capacity between two interconnected entities. In our prior
design, we depended on exchange reports to document the amount of
bandwidth used during interactions between peers. Both parties would
provide reports to a central agency for the purpose of reconciliation at
the conclusion of an operation. This strategy functioned seamlessly
when both peers reached a consensus on the reported bandwidth use.
Nevertheless, the inconsistencies necessitated more scrutiny to
uncover any fraudulent conduct, so complicating the procedure and
allowing for disagreements.

Our objective with the existing system is to eliminate cheating by
directly tackling the problem at the protocol level. In order to do this,
we get inspiration from Neuman's Proxy-based authorization and
accounting for distributed systems. This accounting system provides a
decentralized and delegated approach to precisely quantify resource
use.

According to Neuman's paradigm, an account server creates a digitally
signed check, also known as a proxy, that grants permission for a
particular amount of resource consumption. Within our specific
circumstances, this examination is often known as bandwidth
allotment. The information provided consists of the account server
(Orbital), the payer (Sconnect), the payee (storage node), the
maximum permissible use of resources (bandwidth), a distinct
identification to avoid duplicate transactions, and a specified date of
expiry. The Orbital allocates bandwidth for the Sconnect only if the
Sconnect is permitted for the desired activity. The Sconnect
subsequently transmits the allocated bandwidth to the storage node
at the start of a storage activity. After confirming the signature of the
Orbital, the storage node carries out the operation within the allowed
bandwidth limit and sends the bandwidth allotment to the Orbital for
payment.

Additionally, we include a system influenced by Filecoin's off-chain
retrieval market, which involves the transfer of data in tiny increments.
This architecture mitigates the possibility of one party engaging in
fraudulent behaviour by dividing activities into smaller requests. This
technique operates in a manner akin to an optimistic, incremental-
release, equitable exchange protocol, where neither participant is
subjected to substantial loss in the event of early termination of the
protocol.

To manage this efficiently without burdening the Orbital with excessive

4.17 Bandwidth Management

www.larissa.network | www.silos3.com

Design Constraints of SILO2

overhead, we use restricted bandwidth allocations. These limited
allocations, similar to macaroons, may be further constrained without
eliminating current limits, guaranteeing that only the assigned
bandwidth is used. The Sconnect controls these allocations, gradually
increasing the limit as the storage node successfully transfers data,
ensuring that only the largest allocation received is retained.

For example, if the first bandwidth allocation allows for a maximum of x
bytes, the Sconnect begins with a lesser allocation of y bytes, enabling
the storage node to authenticate the permission. After verification, the
storage node sends the data corresponding to a certain number of
bytes, denoted as 'y', and then waits for the next allocation. This
method continues iteratively until all x bytes are sent. In the event of an
unexpected termination of the operation, the storage node will save
the highest allocation it has received and forward it to the Orbital for
payment.

This bandwidth management system mainly focuses on monitoring the
amount of bandwidth used during storage operations, namely the
storage and retrieval of data fragments. However, it does not take into
consideration the bandwidth consumed by maintenance traffic or
node discovery activities. By including these strong measures, we
guarantee precise monitoring of bandwidth and secure transactions,
therefore improving the overall dependability and confidence in the
network.

4.18 Orbital Reputation
Within the SILO, the dependability and credibility of Orbitals are
essential for sustaining a resilient and distributed storage system. If an
Orbital shows below-average performance, problems with payment, or
poor production of demand, storage nodes are motivated to refuse to
take data from that Orbital.

Storage nodes have the independence to choose the Orbitals with
whom they want to cooperate and have the option to abstain from
collaborating with those they deem untrustworthy. If an Orbital fails to
fulfil expectations or acts in a manner that undermines trust, storage
nodes have the ability to express their lack of faith by ceasing their
engagement with that particular Orbital.

In order to optimise this procedure and guarantee a uniform standard
of service, storage node operators have the option to automatically
place their faith in a carefully selected list of authorised Orbitals that
are supplied by the Larissa Network. The selection of these Orbitals is
done via a rigorous evaluation process that includes stringent

www.larissa.network | www.silos3.com

Design Constraints of SILO2

quality controls, operating requirements, and payment service level
agreements (SLAs). This technique provides storage node operators
with a level of confidence that they are collaborating with trustworthy
Orbitals that comply with predetermined operational and financial
criteria.

In order for an Orbital operator to be included in the Larissa Network's
recommended list, they must adhere to certain operating rules,
payment processes, and price structures. Furthermore, it is necessary
for them to establish a legal agreement with Larissa Network,
guaranteeing that they maintain a superior level of service that is in line
with the network's and its members' standards.

SILO promotes transparency and accountability among Orbital
operators by introducing a reputation-based system. This creates a
favourable environment where storage nodes and Orbitals may both
get advantages from a reliable and effective storage network.

4.19 Data Cleanup and Garbage Collection
Efficient storage system maintenance in the SILO network relies on the
appropriate management of unwanted or old data, also referred to as
trash collection. When clients want to relocate, substitute, or erase
data, Orbitals (formerly known as Satellites) or client applications
operating on behalf of Orbitals will inform storage nodes that the data
in issue is no longer needed.

In some setups, the client directly initiates the deletion of messages,
and the metadata system guarantees that evidence of deletion is sent
to a limited number of storage nodes. This guarantees that as soon as
data is removed, all accessible and active storage nodes are instantly
informed, hence maintaining the organisation and efficiency of the
storage network.

Nevertheless, there are occasions when storage nodes may experience
temporary unavailability or offline status, resulting in their failure to
receive these delete messages. In such instances, data that is no longer
required is referred to as "garbage." Furthermore, in scenarios where
the client does not send delete messages, unnecessary data builds up
as trash. Crucially, Orbitals only incur costs for data that they
anticipate will be kept. This implies that storage nodes containing huge
quantities of useless data would get lower earnings compared to those
that effectively manage their storage, unless they implement a garbage
collection mechanism.

www.larissa.network | www.silos3.com

Design Constraints of SILO2

Garbage collection entails a systematic procedure for finding and
eliminating superfluous resources. A precise garbage collection system
in computing ensures optimum efficiency by collecting all superfluous
data without any residual remnants. Conversely, a conservative
garbage collection system may intentionally retain certain rubbish in
order to optimise efficiency and resource allocation. SILO's first
implementation adopts a cautious strategy, guaranteeing that storage
nodes get sufficient compensation to cover the expenses related to
retaining a minimal quantity of residual waste.

SILO's first release will use a conservative garbage collection
mechanism to handle nodes that do not get the initial delete
messages. This strategy will be further improved in subsequent
releases. At regular intervals, storage nodes will ask their respective
Orbital for a customised data format that assists in detecting
differences between stored data and the anticipated condition. At its
most basic level, this data structure might be a hash of stored keys,
enabling efficient identification of data that is no longer necessary.
After identifying data that is not synchronised, it is possible to use a
different data structure, such as a Bloom filter, to precisely determine
which data has to be eliminated.

Orbitals facilitate the removal of unnecessary data by providing
customised data structures at regular intervals. This allows storage
nodes to clean up trash data based on a pre-set tolerance level,
resulting in a more efficient and organised garbage collection
procedure. This system guarantees the efficiency of storage nodes,
optimises data storage, and ensures that the whole network maintains
a high level of speed and dependability.

4.20 Sconnect Interface
Within the SILO network, the word "Sconnect" encompasses any
program or service that utilises the LibSconnect library to support
interactions between Orbitals and storage nodes. Sconnect functions
as the user interface for the SILO network and is available in several
versions to cater to different use scenarios:

LibSconnect: This library serves as the foundation for storing and
retrieving data inside the SILO network, including essential features.
Developers have the ability to incorporate LibSconnect into their
programs, allowing for easy use of the distributed storage features
provided by SILO.

www.larissa.network | www.silos3.com

Design Constraints of SILO2

Nexus Gateways: These gateways serve as intermediary layers,
connecting services or applications with the SILO network. Nexus
Gateways operate as co-located services that directly interface with
storage nodes, hence reducing central bandwidth expenses. In
essence, a Nexus Gateway functions as a streamlined service interface
built on the foundation of LibSconnect. The first version of this gateway
provides an interface that is compatible with Amazon S3. This allows
users and programs to store data in the SILO network without the need
to manually handle the intricacies of a distributed storage system.

Sconnect CLI: The Sconnect Command Line Interface (CLI) is a
command-line tool that utilizes LibSconnect to do a range of activities,
including file uploading and downloading, bucket creation and removal,
and file permission management. The Sconnect CLI is specifically
intended to provide a user experience that closely resembles that of
well-known Linux/UNIX utilities such as scp or rsync. This design
ensures that those who are already acquainted with these
environments can easily access and use the Sconnect CLI.

SILO's dedication to openness and community-driven development is
shown by the fact that all Sconnect software components, such as
storage nodes and Orbitals, are created and made available as open-
source software. These components facilitate many use cases and
transactions, ranging from basic file storage and retrieval to more
intricate processes. They provide users a resilient and adaptable
framework for managing their data in a decentralized setting.

www.larissa.network | www.silos3.com

Typical Data Operations5

Below are many typical use case examples illustrating various forms of
data transfers inside the system.

Upload Process5.1
When a user starts a file upload in the SILO network, the process
begins by passing data to an instance of Sconnect, which is the client-
side interface for dealing with Orbitals and storage nodes.
The steps involved in the upload process are as follows:

Encryption and Data Segmentation:1.
Sconnect chooses an encryption key and an initial nonce for
the first data segment and promptly begins encrypting the
incoming data using authorised encryption techniques. This
guarantees that data is protected from the beginning.
Sconnect receives incoming data and temporarily stores it in a
buffer. It then analyses the data to decide whether it is a tiny
enough segment to be saved directly on the Orbital, or if it is a
larger segment that has to be distributed over other storage
nodes in the network.

Preparing for Storage:2.
If the data is sufficiently substantial to need a distant segment,
Sconnect initiates a request to the chosen Orbital to make
arrangements for storing the segment. This request contains
essential credentials, such as macaroons and identification
certificates.
Upon receiving this request, the Orbital validates the legitimacy
of Sconnect's permission and ensures that they have the cash
to cover the upload activity. Prior registration with this
particular Orbital is a must for the user.
The Orbital system chooses storage nodes by considering
factors such as resource availability, durability, performance,
geographical proximity, and reputation needs. Sconnect
receives a list of specific nodes, including their contact
information, bandwidth allotment, and a root piece ID.

Data Upload and Erasure Encoding:3.
Sconnect establishes many simultaneous connections to the
designated storage nodes, while monitoring the amount of
bandwidth used throughout the operation.

www.larissa.network | www.silos3.com

Design Constraints of SILO

The segment is partitioned into smaller entities known as
stripes, which are then encoded using an erasure coding
algorithm. The erasure shares are consolidated into segments
that are simultaneously communicated to each storage node.
In order to minimise the impact of long-tail effects and enhance
performance, Sconnect employs a technique called over-
encoding, which involves producing an excess number of data
bits above what is absolutely required for reconstruction. This
feature enables the system to terminate slower uploads and
give priority to quicker nodes, hence improving the overall
speed and efficiency of uploads.
The process of transferring data continues until either the
maximum segment size is reached or the data stream
concludes. The hashes of all items are added at the end of each
data stream.

 4.Data Storage and Payment:
Every storage node saves data using a distinct piece ID that is
linked to the Orbital's ID. Additionally, each node keeps track of
the highest limited bandwidth allotment it got throughout the
upload process. In the event of an upload being terminated
prematurely, the node will destroy all remaining data except for
the greatest allocation, which will be retained for the purpose of
payment.
After a successful upload, Sconnect employs a deterministic
hierarchical key scheme to encrypt the randomly selected
encryption key for the file. It then proceeds to upload a pointer
object back to the Orbital. This pointer contains critical
metadata, such as:

The storage nodes that successfully received the data
The encrypted path for the segment
The erasure code algorithm used
The piece ID and encrypted encryption key
The hash of the piece hashes and a signature

 5. Finalising the Upload:
Sconnect iterates through each consecutive segment until the
full data stream is uploaded. Each subsequent segment use a
distinct encryption key, with the initial nonce increased from
the preceding section.
Once all segments have been uploaded, Sconnect transmits the
final information to the Orbital. This metadata includes the total
number of segments, their sizes, the beginning nonce, and any
extra item metadata.
Storage nodes regularly report their highest bandwidth
allocations to the Orbital in order to get payment, guaranteeing

2

www.larissa.network | www.silos3.com

Design Constraints of SILO2

that they are remunerated for the storage and bandwidth they
have supplied.

The organised upload procedure guarantees data confidentiality,
optimal resource use, and fair remuneration for storage nodes, in line
with the decentralized principles of the SILO network.

5.2 Download Process
When a user starts a download request for an item from the SILO
network, the procedure is optimised to be efficient and reduce delay.
This is the sequence of events that occurs during the download
process:

Initial Request and Metadata Handling:1.
The user initiates a download request to Sconnect, indicating
the specific item they want to get.
Sconnect's objective is to reduce the amount of contacts with
the Orbital by proactively seeking information about the item,
which includes references to the initial segment. If Sconnect
had prior knowledge of the desired byte range, it may
immediately notify the Orbital about these particular byte
ranges, therefore motivating the Orbital to provide the required
segment pointers.

 2.Orbital Actions and Response:
Upon receiving a segment pointer request, the Orbital takes the
following actions:

Validation: The Orbital verifies whether Sconnect has the
requisite authorizations to access the designated segment
and ensures that there are enough money to facilitate the
download.

Bandwidth Allocation: Each item that makes up the segment
is allocated an unlimited amount of bandwidth, as explained
in section 4.17.
Node Information Lookup: The Orbital obtains the contact
information for the storage nodes specified in the segment
pointer.The Orbital obtains the contact details for the
storage nodes specified in the segment pointer.

Response to Sconnect: The function provides the desired segment
pointer, as well as the bandwidth allocations and contact details of the
storage node for each piece.

www.larissa.network | www.silos3.com

Design Constraints of SILO2

 3. Segment Retrieval:
Sconnect evaluates if further segments are required to satisfy
the user's data inquiry. When more segments are needed, it
retrieves the extra segment pointers from the Orbital.
Once Sconnect has obtained all the required segment pointers,
it establishes parallel connections to the relevant storage
nodes. The system requests the specific ranges of data to be
erased from each stored piece, while simultaneously monitoring
the amount of bandwidth being used, as described in section
4.17.

 4.Optimising Download Performance:
Given that not all erasure shares are necessary for data
reconstruction, Sconnect optimises this by minimising "long
tails", which refers to slower downloads. Sconnect significantly
enhances speed and reduces total download time by
eliminating slower transfers.
Sconnect merges the obtained erasure shares into stripes and
decrypts the data, reconstructing the original object for the
user.

 5. Handling Aborted Downloads:
In the event of a download being stopped or aborted, each
storage node will save the highest limited bandwidth allotment
it has received so far, but will delete all other request-related
data.
Irrespective of the result, storage nodes then provide their
highest limited bandwidth allotment to the relevant Orbital in
order to permit payment for the bandwidth used during the
download.

This procedure guarantees the effective retrieval of data, optimises the
allocation of network resources, and assures appropriate
compensation mechanisms for storage nodes, hence boosting the
overall functionality and dependability of the SILO network.

5.3 Deletion Process
When a user wishes to delete a file on the SILO network, the request is
first sent to Sconnect. Sconnect retrieves all segment pointers
associated with the file that is scheduled for deletion. If the
configuration allows for instant removal, Sconnect works along with
Orbital to supervise the process. Orbital confirms that Sconnect has
the requisite permissions and sufficient authorization to delete the file.
Afterward, it generates signed contracts for each segment, instructing

www.larissa.network | www.silos3.com

Design Constraints of SILO2

Sconnect triggers the transmission of deletion commands to the
relevant storage nodes. Each node confirms the receipt of the
command and indicates whether the file has been deleted or if it has
already been wiped. Sconnect collects these verifications and sends
them to Orbital. Orbital requires a certain number of confirmations to
verify the effective completion of the deletion. After confirming, Orbital
removes the information associated with the file, stops charging the
user for storage, and ceases payments to storage nodes for the
deleted data. Sconnect then generates a report for the user, confirming
the successful completion of the operation.

When it is not feasible to delete data directly or when storage nodes
are temporarily unavailable, the network relies on a garbage collection
process. Storage nodes often request garbage collection updates from
Orbital, which helps them find and remove redundant data. This system
ensures efficient storage space management in the network,
guaranteeing its availability for future use and maintaining optimum
performance.

5.4 File Relocation
When a user intends to transfer a file to a different place on the SILO
network, the procedure starts with Sconnect receiving the request for
relocation. Sconnect then retrieves all segment pointers connected
with the file from Orbital. Orbital performs checks to verify that
Sconnect has the requisite rights to read the file. If the validation is
successful, Orbital retrieves and provides the segment information for
each pointer.

Sconnect decrypts the segment information by using an encryption
key that is obtained from the current file location. Subsequently, it
computes the updated destination route and applies a fresh
encryption key that is tailored to the new location to encrypt the
metadata once again. Sconnect initiates a request to Orbital to update
the metadata by include the revised segment pointers for the new
route and eliminating the previous pointers. This request is performed
as an indivisible compare-and-swap operation, guaranteeing
uniformity and avoiding conflicts while carrying out the relocation
procedure.

Orbital does a conclusive validation to verify that Sconnect has the
necessary authorization to carry out these modifications and that the
content of the file has remained unaltered since the commencement of
the transfer operation. Once all tests are successfully completed,
Orbital proceeds to perform the relocation and updates the file

www.larissa.network | www.silos3.com

Design Constraints of SILO2

 information appropriately. It is crucial to emphasise that this
procedure just entails updating the metadata, without altering the
actual data on the storage nodes or sending any extra requests to the
storage nodes.
Efficient file relocation may not be provided in the first release of the
network due to the intricate nature of guaranteeing atomicity and
consistency during pointer modifications. Subsequent versions will
strive to enhance this feature in order to facilitate smooth file
management operations.

5.5 File Listing
To begin the process of listing files on the SILO network, the user must
first send a request to Sconnect to get a page containing the desired
objects. Sconnect receives this request and converts the unencrypted
file paths into encrypted paths in order to provide security and
privacy. After encrypting the pathways, Sconnect initiates a request to
Orbital for the encrypted paths' associated page.

Orbital verifies the request by confirming that Sconnect has the
requisite rights to view the files. After the validation is successfully
completed, Orbital sends the specified list of encrypted pathways
back to Sconnect. Ultimately, Sconnect employs decryption to reveal
the initial file paths to the user, thus concluding the process of listing
files. This solution guarantees both the security and efficiency of
navigating through the user's data on the network.

5.6 Audit
For the purpose of preserving data integrity, every Orbital is
responsible for maintaining a roster of segment stripes that need
auditing on the network. The process of populating this list involves
choosing stripes from storage nodes that have had less recent audits,
thereby guaranteeing an equitable distribution of checks. The Orbital
algorithm randomly chooses a stripe of data from a storage node,
which requires obtaining data from other nodes in the erasure-coded
group as well. This randomization ensures that data checks are equally
spread across the network.

The Orbital then systematically processes the audit list and records
any discrepancies:

The Orbital does a comprehensive data retrieval operation for each
stripe audit, excluding any nodes that are presently marked for
containment. Unlike typical download operations, these audits are
not limited by duration, enabling the Orbital to wait for node

www.larissa.network | www.silos3.com

Design Constraints of SILO2

 answers for an extended period.
After collecting the data, the Orbital examines the erasure shares to
identify any discrepancies. If a storage node consistently provides
incorrect data, it will be disqualified, resulting in its exclusion from
future data storage selection and cessation of payment reception.
When a storage node becomes unresponsive, the Orbital system
generates a hash of the anticipated audit outcome and saves it.
This action puts the node in a condition where it is required to
react to many audit efforts until it either successfully passes or is
disqualified.
The Orbital requests the whole data piece and compares it with the
anticipated hash to detect any inconsistencies in nodes' answers.
This guarantees the preservation of the network's integrity and the
presence of only trustworthy nodes inside the network.

This auditing process ensures that the network continuously verifies
data accuracy and identifies unreliable storage nodes, maintaining a
high standard of trust and reliability.

5.7 Data Repair
The network data recovery procedure consists of two essential stages:
identifying files that are susceptible to data loss and then restoring
those files. The detection phase guarantees the continued accessibility
of all stored data by examining the state of storage nodes and the files
they contain.

Detection Phase: The Orbital conducts periodical pings to all
storage nodes in order to assess their state, either as part of
normal audits or during node discovery activities. When a storage
node does not reply, it is designated as offline. In addition, nodes
that do not pass audits are labelled as untrustworthy. The Orbital
then analyses the data points linked to these malfunctioning or
unreliable nodes. When the count of reliable, connected nodes
storing a certain data segment drops below a predetermined
threshold, that segment is marked for restoration.
Repair Phase: A worker process manages repair jobs by retrieving
flagged segment pointers from a repair queue. The worker
downloads sufficient components for each damaged section to
fully rebuild it, guaranteeing the presence of all essential data for
precise restoration. Subsequently, the worker verifies the
authenticity of these pieces by comparing them to the
corresponding hashes stored alongside them. Any inaccurate
pieces are discarded, and the source nodes from which these
pieces originated are identified as having passed audits. After

www.larissa.network | www.silos3.com

Design Constraints of SILO2

gathering a enough quantity of valid parts, the worker restores the
missing pieces. Additional storage nodes are chosen to store these
regenerated fragments, and the new fragments are uploaded as part of
a standard data upload process. Ultimately, the metadata pointer for
the segment is modified to accurately represent these changes.

This repair system guarantees the consistency and accessibility of
data across the network by constantly monitoring and resolving any
data loss, ensuring strong and dependable storage.

5.8 Compensation Process
The compensation procedure in the network guarantees precise
remuneration for the contributions made by storage nodes. This is the
operational process:

At the beginning, the Orbital establishes a predetermined time period,
usually lasting one day, to calculate payments for data that is held on
the network. This period is only used for accounting reasons, while the
actual disbursement of funds occurs according to a separate
timetable. During every roll-up period, the Orbital examines all data it
thinks is held on each storage node and computes the payment due
depending on the time of storage and the rates established for data at
rest.

Aside from storage fees, the Orbital system also handles bandwidth
use statistics that are regularly sent by storage nodes. These reports
provide a comprehensive breakdown of the amount of bandwidth used
for data transfers, which is included into the computation of the
payment. After gathering all pertinent data about storage and
bandwidth utilisation, the Orbital calculates the exact amount owing to
each storage node.

During the payment issuance process, the Orbital computes the
combined amount owed for both storage and bandwidth. Afterwards,
the monies obtained are sent to the wallet addresses given by the
storage nodes, guaranteeing that they are fairly and effectively paid for
their services in a clear and efficient way.

www.larissa.network | www.silos3.com

Upcoming Enhancements6

We are always working on improving our network, with several changes
and new features scheduled for next releases. This section delineates
certain crucial domains in which we strive to enhance and broaden our
existing execution to more effectively cater to the ever-changing
requirements of our customers and the distributed storage ecosystem.

Scaling for High Demand Files6.1
Occasionally, certain files on our network may see an unforeseen
increase in popularity, leading to a substantial rise in access requests.
Although storage node operators may initially see advantages from the
higher bandwidth utilisation, the demand might rapidly surpass the
existing bandwidth capacity, requiring the implementation of a
dynamic scaling strategy.

Since orbitals have the authority to supervise and permit all access to
file pieces, they are able to efficiently monitor and regulate access to
files that are in high demand. When the demand surpasses the current
capacity, the orbital may temporarily limit access, enhance the file's
redundancy by spreading it over more storage nodes, and then restore
access to provide a smoother delivery.

Reed-Solomon erasure coding has a remarkable property that allows
for scalability. With a (k,n) encoding technique, the data may be
reconstructed using any k components. This feature enables easy
scalability by producing supplementary components without
modifying the existing ones. For instance, if a file is first encoded using
a (20, 40) scheme and there is a need to increase the redundancy by
two-fold, the orbital may generate additional fragments to transition to
a (20, 80) scheme. By distributing the file among several storage
nodes, the load can be balanced and the additional demand may be
accommodated.

Although the increase in redundancy results in greater storage
expenses owing to the inclusion of more data fragments, it offers
substantial advantages. This technique effectively handles enormous
volumes of traffic and improves the global distribution of data, resulting
in superior performance and dependability for delivering information in
different places.

www.larissa.network | www.silos3.com

Design Constraints of SILO2

Enhancing Metadata Management and
User Autonomy

6.2

During the initial phase of our implementation, the orbital operator is
primarily responsible for maintaining the quality of service. This
encompasses the provision of regular backups, timely payments,
durability, and high availability. Users are likely to favor a more
autonomous approach to managing their data and metadata, and they
will likely seek to reduce their dependence on orbital operators over
time. This may entail the elimination of the burdensome process of
manual downloads and uploads, thereby enabling more seamless data
transfer between various orbitals.

We intend to implement a metadata import/export system in the near
future. This system will enable users to autonomously back up their
metadata and simplify the process of transferring data between
orbitals. The objective of this preliminary phase is to grant users more
autonomy over their data and to improve their capacity to transfer
data between various platforms as required.
In the medium term, our objective is to further optimise this process by
automating the backup process and reducing the size of metadata
exports. We intend to create a system that directly backs up metadata
to the network on a regular basis, thereby ensuring that the process is
as seamless as feasible. This would reduce the need for user
intervention and establish a more robust, automatic safeguard against
data loss.

Our long-term objective is to eliminate the necessity for centralised
orbital control over metadata. This would ideally entail the
implementation of a Byzantine-fault tolerant consensus algorithm to
manage metadata in a decentralized manner. The difficulty lies in the
delicate balance between the necessity to prevent excessive
coordination and the desire to ensure that the platform maintains high
performance standards that are similar to those of traditional cloud
storage services. We are dedicated to the continuous pursuit of
research and development in this field in order to investigate viable
solutions that are consistent with these objectives.

This direction is consistent with our long-term strategy to promote a
genuinely decentralized storage environment by reducing central
points of control and enhancing user independence. To learn more
about our coordination avoidance strategy and our decision not to
immediately prioritize Byzantine fault tolerance, please refer to Section
2.10 and Appendix A.

One of the main challenges in maintaining a decentralized storage
network is selecting the right parameters to balance the expansion
factor and repair bandwidth while ensuring a high level of data
durability. Our goal is to optimise these factors, keeping repair costs
and bandwidth usage minimal without compromising data integrity.

We can draw from existing research, such as the study titled "Peer-to-
Peer Storage Systems: A Practical Guideline to be Lazy" [34], which
provides valuable insights and formulas for understanding the trade-
offs involved. The framework developed from this research helps in
determining network durability and repair bandwidth based on Reed-
Solomon encoding parameters, average node lifetime, and
reconstruction rates.

The key variables and their descriptions are as follows:
MTTF: Mean time to failure.
α: Failure rate, which is the inverse of the mean time to failure
(1/MTTF).
MRT: Mean reconstruction time.
γ: Reconstruction rate, which is the inverse of the mean
reconstruction time (1/MRT).
D: Total data stored in bytes across the network.
n: The total number of pieces each segment is divided into (Reed-
Solomon encoding).
k: The number of pieces required to rebuild a segment (Reed-
Solomon encoding).
m: Repair threshold indicating the minimum number of pieces that
must be available to avoid repair.
LR: Loss rate, indicating the likelihood of data loss.
1-LR: Durability, representing the probability of data remaining
intact.
ED: Expansion factor, showing the storage overhead required.
BR: Repair bandwidth ratio, indicating the fraction of data that must
be repaired over time.
BWR: Total repair bandwidth, reflecting the total bandwidth needed
for repair operations.

The formulas governing these parameters are:

www.larissa.network | www.silos3.com

Detailed Calculations and Analysis7

Estimating Object Repair Costs7.1

www.larissa.network | www.silos3.com

Design Constraints of SILO2

These equations highlight that while repair bandwidth is linearly
affected by node churn, data durability is exponentially sensitive to
increased churn. This necessitates maintaining highly stable nodes with
longer lifespans to achieve desired durability levels. By understanding
these relationships, we can make informed decisions about the storage
network's configuration to balance performance, cost, and reliability
effectively.

This section provides an overview of the calculations needed to
understand the costs associated with repairing data in a decentralized
storage network, emphasising the importance of stability and efficient
management of resources.

Impact of Bandwidth on Storage
Capacity

7.1.1

The repair procedure has a dual impact: it affects both the bandwidth
use of storage nodes and restricts the amount of store space they can
provide. Let us examine a storage node that has a storage capacity of 1
terabyte and a maximum monthly bandwidth limit of 500 gigabytes.
According to our approach, if a node is projected to repair 50% of its
stored data on a monthly basis and each stored file is anticipated to
be viewed at least once, then the node may effectively store around
333 GB of data. This is due to the fact that the total amount of data
sent and the repair tasks performed must not surpass the bandwidth
restriction established for the node.

As the frequency of repairs increases, the amount of accessible
storage space decreases, particularly for nodes that often handle
stored data. The precise rate of paid bandwidth consumption will be
contingent upon the specific nature of the data stored and the level of
demand for access. In order to achieve the best possible storage

Design Constraints of SILO

To assess the likelihood that a storage node consistently maintains its
stored data correctly, we employ a Bayesian method. This approach
helps us estimate the probability that a node will continue to pass
audits based on its past performance. The key question we address is:
How does the outcome of consecutive audits influence our confidence
in a node's reliability?
We model the audit process as a binomial random variable, where the
success rate ppp is an unknown parameter within the range [0, 1]. Each
audit can be considered an independent Bernoulli trial. The beta
distribution, βa,b serves as the conjugate prior for the binomial
distribution in this context, meaning that the posterior distribution also
follows a beta distribution after observing some data. The Bayesian
estimate of the probability of audit success, given as

depends on prior parameters a and b, and the number of successes x
in n audits.

We focus on two widely used priors: the Uniform prior, β1, 1 , which
assumes all outcomes are equally likely, and Jeffrey’s prior, β(0.5,0.5),
which presumes that the success probability is likely to be near 0 or 1.
These priors help us to initialise our confidence levels differently based
on how we perceive the initial uncertainty.

Here’s how the audit success estimates change based on these priors:

www.larissa.network | www.silos3.com

2

efficiency while staying within the limits of available bandwidth, it is
crucial to consistently monitor these ratios and make necessary
adjustments to the amount of useable storage space as the network
conditions change.

This section examines the impact of bandwidth limitations on the
storage node's ability to optimize its storage capacity while
simultaneously managing data serving and repair tasks.

Design Constraints of SILO
Evaluating the Risk of False Positives
in Audits

7.2

www.larissa.network | www.silos3.com

2

As shown in the table, starting with no information (zero audits), both
priors yield an initial probability of success at 0.5. As audits
accumulate and are passed successfully, the estimated probability
rapidly approaches certainty, surpassing 99% with as few as 80
successful audits under Jeffrey's prior. This demonstrates how the
Bayesian framework can quickly enhance our confidence in a node’s
reliability, assuming it consistently passes audits.

Configuring Erasure Coding
Parameters

7.3

When storing erasure-coded segments on a decentralized network, it is
crucial to evaluate piece loss from multiple perspectives to optimise
data durability and efficiency.

Evaluating Direct Piece Loss7.3.1
Direct piece loss considers how erasure-coded pieces decrease over
time at a loss rate of 0 < p < 1. Starting with n pieces, the decay follows
an exponential pattern, , where t represents time. To manage
the repair process, a rebuild threshold m is set, indicating when a
segment should be rebuilt. The time t for pieces to decay from n to
less than m can be calculated using . Solving this for t,
we find .

This formula helps determine the expected lifespan of a segment
between repairs, given parameters n, m, a, and p.

www.larissa.network | www.silos3.com

2

Assessing Indirect Piece Loss7.3.2
Indirect piece loss is modelled by considering a fixed rate of nodes
that leave the network each month, regardless of whether they hold
pieces of a particular segment. To calculate the probability that a
certain number of these departing nodes were storing pieces of the
segment, the hypergeometric probability distribution is used. If c
nodes leave out of a total of C nodes each month, and n nodes were
storing pieces of the segment, the probability that d of the departing
nodes held these pieces is given by the distribution:

To find out how long it takes for the number of pieces to drop below a
certain threshold mmm, the model iteratively reduces the number of
pieces based on the mean reduction per iteration. If multiple checks
per month are assumed, the model adjusts for a reduced churn rate
per check, which influences the number of expected rebuilds per
month for any segment.

Simulations for Modelling Indirect
Piece Loss

7.3.3

In order to get a deeper comprehension of the consequences of losing
pieces in a decentralized storage network that utilises Reed-Solomon
encoding, we conduct numerical simulations using different setups. The
objective is to provide decision tables that forecast the average rates
at which segments are reconstructed in the most unfavourable
situations. The simulations analyse several Reed-Solomon parameters,
including the total number of pieces (n), the minimum number of
pieces necessary for reconstruction (k), and the repair threshold (m).

We model the occurrence of piece loss at a fixed monthly rate,
assuming that pieces are lost as a result of variables such as node
turnover or data corruption. In order to determine the average number
of rebuilds each month, we divide a segment into n fragments,
distribute them randomly around the network, and then simulate node
failures. During each simulation, a certain number of nodes are chosen
to fail based on a predetermined loss rate. This procedure is repeated
until the number of surviving nodes drops below the repair threshold,
denoted as m.

www.larissa.network | www.silos3.com

2

The simulation iterates this procedure many times every month,
adjusting the rate of component loss based on the monthly number of
inspections conducted. We document the frequency of rebuilds that
take place over each simulated two-year period, with particular
emphasis on the 99th percentile of the distribution to assure reliability
and stability. By calculating the average of these values across 1,000
repetitions, we can determine the monthly mean rebuild rate.

Showcasing different combinations of parameters and their impact on
repair bandwidth and durability. This helps in identifying the optimal
configuration for maintaining durability while minimising repair costs.

This table demonstrates the relationship between Mean Time To
Failure (MTTF), Reed-Solomon parameters, repair bandwidth, and
durability, offering insights into optimal configurations for network
resilience and efficiency.

Summary7.3.4

To summarise, the selection of erasure coding settings should be in
accordance with the particular network characteristics and
performance objectives. Various networks may need distinct Reed-
Solomon designs in order to achieve an optimal balance between
durability and maintenance costs. Typically, when the m/n ratio
approaches 1, the frequency of repairs rises, leading to increased
bandwidth use. Although a higher m/n ratio may improve the longevity
of files, it also results in more regular maintenance and greater use of
bandwidth.

www.larissa.network | www.silos3.com

Design Constraints of SILO2

To summarise, the selection of erasure coding settings should be in
accordance with the particular network characteristics and
performance objectives. Various networks may need distinct Reed-
Solomon designs in order to achieve an optimal balance between
durability and maintenance costs. Typically, when the m/n ratio
approaches 1, the frequency of repairs rises, leading to increased
bandwidth use. Although a higher m/n ratio may improve the longevity
of files, it also results in more regular maintenance and greater use of
bandwidth.

In order to minimise the frequency of repairs and enhance longevity, it
is advantageous to maximise the total number of components,
denoted as n. This technique enables a decrease in the value of m
(repair threshold), resulting in a reduction in the frequency of repairs
and, subsequently, a decrease in bandwidth utilisation. In essence,
increasing the value of n enhances the network's ability to withstand
node failures since it prolongs the time required to accumulate enough
losses that need a repair.

For example, let's suppose a network that has an average duration
before it fails of six months. Comparing a (20, 40) Reed-Solomon
encoding scheme to a (30, 80) strategy, if we set the repair threshold
to be k+10 in both instances, the (30, 80) scheme has a lower repair
bandwidth ratio (0.60) compared to the (20, 40) scheme (0.87). The
reason for raising n is to enhance data storage reliability and minimise
the need for repairs, despite the fact that both designs initiate repairs
when the number of components decreases to k+10. Therefore, the
process of choosing the most suitable parameters involves taking into
account the requirements for durability as well as the limitations on
repair capacity, all within the context of the specific network
circumstances.

 Distributed Consensus MechanismsA

To clarify why Byzantine distributed consensus isn't the focus of our
current efforts, it’s useful to explore the history of distributed
consensus systems.

www.larissa.network | www.silos3.com

Design Constraints of SILO2

Non-Byzantine Distributed ConsensusA1
Initially, data storage systems in computers were limited to a single
machine, which carried a substantial risk of losing data or experiencing
downtime if that unit failed. As a result, researchers devised techniques
that enable clusters of computers to collaboratively handle data,
improving system availability, boosting data processing speed, and
dispersing computing tasks. This expedition has been arduous yet has
yielded pioneering innovations.

An essential hurdle in reaching agreement across several computers is
the possibility of message loss, which is well shown in the "Two
Generals' Problem." In this problem, two sides must come to a
consensus despite the presence of unreliable communication. The
issue highlights the intrinsic challenge of attaining complete consensus
with a limited amount of messages, prompting developers to create
systems that handle uncertainty by balancing consistency and
availability.

The CAP theorem concisely states that a distributed system can
provide just two of the following properties: consistency, availability,
and partition tolerance. Due to the inevitability of network failures,
systems are required to prioritise partition tolerance, which results in a
trade-off between consistency and availability. Depending on the
architectural design of a system, some prioritise consistency, ensuring
that every read action mirrors the most recent write operation. On the
other hand, some prioritise availability, allowing the system to remain
operational even if data consistency cannot be ensured.

Linearizability, the most robust consistency model, has been a primary
objective for distributed systems since it allows for the development
of dependable distributed locks and other coordination mechanisms.
Initial efforts to establish linearizable consensus resulted in the
development of two-phase and three-phase commit protocols.
However, these protocols were later shown to be inadequate in
ensuring consistency when faced with message loss. As a result, more
resilient algorithms such as Viewstamped Replication and Paxos were
developed.

Paxos, although being widely used in distributed consensus algorithms,
is renowned for its intricate nature, which has led to the development
of more straightforward alternatives such as Raft. Currently, Paxos, Raft,
and other consensus protocols like as Viewstamped Replication and
Chain Replication are extensively used in large-scale distributed
systems.

www.larissa.network | www.silos3.com

Design Constraints of SILO2 Byzantine Fault-Tolerant ConsensusA2

These protocols serve as the foundation for many of the highly resilient
data storage solutions utilised today.
These advancements demonstrate the intricate progression of non-
Byzantine distributed consensus, a crucial field of study and innovation
that has influenced the field of distributed computing.

The architecture of our system assumes that the majority of nodes will
operate in a rational manner, some nodes may act maliciously
(Byzantine), and very few, if any, would act totally altruistically. The
previously stated consensus algorithms operate under the assumption
that all participating nodes behave altruistically, which is not
appropriate in scenarios where nodes may exhibit hostile or illogical
behaviour. These conventional consensus methods have had a
significant impact on many applications that need dependable fault-
tolerant storage. Nevertheless, attaining distributed agreement in the
presence of Byzantine defects has proved much more difficult.

The Byzantine fault-tolerant (BFT) consensus issue has received
significant attention in research, particularly since the emergence of
Bitcoin and its blockchain system. This region is undergoing continuous
development and has yielded numerous algorithms, such as PBFT
(Practical Byzantine Fault Tolerance), Q/U (Query/Update), FaB (Fast
Byzantine), Zyzzyva, RBFT (Redundant Byzantine Fault Tolerance),
Tangaroa, Tendermint, Aliph, Hashgraph, HoneybadgerBFT, Algorand,
Casper, Tangle, Avalanche, PARSEC, and others.

Byzantine Fault Tolerant (BFT) algorithms bring about further intricacies
and compromises that are not necessary in non-Byzantine algorithms.
These complexities are aimed at handling possibly malevolent or
uncooperative nodes. For example, PBFT incurs substantial network
overhead since each client has to interact with a majority of nodes, and
each node must answer individually. Bitcoin restricts the number of
transactions it can process by modifying the complexity of its proof-
of-work method in order to ensure security. Several protocols that
emerged after Bitcoin similarly mandate that all nodes retain a
comprehensive record of all modifications to the system's state in
order to guarantee its integrity and deter fraudulent activities.

The continued development of Byzantine fault-tolerant consensus
algorithms aims to address the basic difficulty of obtaining agreement
in contexts where members may be untrustworthy. Each new method
offers distinct answers to this challenge. Research in this field is
ongoing as systems adapt and explore novel approaches to address
faults and ensure uniformity in decentralized networks.

www.larissa.network | www.silos3.com

Design Constraints of SILO
Rationale for Avoiding Byzantine Fault
Tolerance

A3

Due to the present limits of available solutions, we have decided not to
include Byzantine fault-tolerant consensus methods into our system.
Although algorithms such as Flexible Paxos provide enhancements
compared to classic Paxos by minimising the need for coordination in
stable situations, they are not appropriate for contexts where nodes
may exhibit malicious behaviour. In addition, distributed ledger
technologies and tangle-like techniques, which aim to resolve
Byzantine faults, often experience significant global coordination
overhead and struggle to quickly remove unnecessary past data.

We are quite excited about the creation of a resilient and expandable
Byzantine fault-tolerant system that can efficiently manage both
performance and security. Nevertheless, until a definitive and effective
answer arises, we have opted to minimise our vulnerability to these
problems by completely ignoring them in our present design. By
adopting this strategy, we may prioritise other elements of system
efficiency and security without dealing with the additional burden and
intricacies involved with Byzantine fault tolerance.

Potential Attack VectorsB
Within each distributed system, there are several ways in which
attacks might occur, presenting substantial dangers. While many
aspects are shared throughout distributed systems, others are
specifically applicable to decentralized storage networks.

Identity Hijacking Attacks: Spartacus assaults, sometimes referred to
as identity hijacking, happen when a node replicates the node ID of
another node in order to impersonate it. This enables the assailant to
intercept or modify data that is meant for the originating node. By
using node IDs as public key hashes and enforcing message signatures,
this attack may be successfully mitigated. This is because the attacker
would lack the requisite private key to sign messages and establish
authentication inside the network.

Multiple Identity Attacks: Sybil attacks are characterised by the
creation of several counterfeit nodes with the intention of disrupting
network operations, often by the hijacking or discarding of
communications. Our method mitigates the danger of such assaults by
using proof-of-work identity creation. In addition, our reputation
system has a screening process for new nodes, thereby preventing a
sudden influx of new nodes that may have harmful intentions from
immediately obtaining access to important data.

www.larissa.network | www.silos3.com

Network Isolation Attacks: Eclipse attacks are designed to isolate a
certain node or set of nodes, thereby limiting their connectivity to just
malevolent nodes. Our network employs public key hashes and
signatures to safeguard against man-in-the-middle attacks, which may
be difficult to identify. As the network size increases, it becomes more
difficult for an attacker to gain complete control over the connections
of any one node.

Coordinated Node Attacks: Honest Geppetto assaults include an
assailant who controls many nodes that seem to be separate and
independent. These nodes gather data and build up a reputation
gradually. Ultimately, the assailant utilises these nodes to deliberately
disrupt the network, either by withholding data or abruptly
disconnecting. Our protection technique includes examining the
behavioural patterns of nodes in order to detect and mitigate potential
hazards. Additionally, we distribute data among a variety of
unconnected nodes.

Extortion-Based Attacks: Hostage byte assaults are a kind of cyber
attack where some nodes intentionally withhold data in order to
extract more money. Reed-Solomon encoding is used in our network to
alleviate this issue by enabling data reconstruction from alternative
nodes. To enhance the security against such assaults, we may minimise
their impact by distributing the components over several nodes and
minimising centralization.

Cheating and Malicious Behaviour: There is a possibility that dishonest
storage nodes or orbitals may try to exploit bandwidth allotment or
provide false information about their activity. Our solution mitigates
these dangers and preserves confidence among participants by
mandating cryptographic signatures for bandwidth transactions and
implementing a rigorous screening procedure for new nodes.
Compromised Nodes: Untrustworthy storage nodes or orbitals may
provide data to unauthorised requestors, hence compromising data
security. Nevertheless, the use of strong encryption on the client-side
guarantees that data privacy remains uncompromised, even in such
circumstances.

Audit Manipulation Attacks: Conventional techniques of verifying
Merkle proofs are susceptible to manipulation of pre-generated
responses. In order to address this issue, our network use random
stripe requests and the Berlekamp-Welch method to verify the
integrity of data, hence increasing the difficulty for rogue nodes to
successfully pass audits without really storing the data.

Our objective is to establish a robust and reliable distributed storage
network by adopting these security measures. This network will be

www.larissa.network | www.silos3.com

capable of withstanding a range of possible assaults, while also
guaranteeing the integrity and availability of data.

Key Advantages for UsersC
The SILO network is specifically engineered to provide customers with
superior levels of security, availability, performance, and cost-
effectiveness as compared to conventional on-premise or centralised
cloud storage systems. This appendix examines the reasons why our
decentralized method offers substantial advantages in many scenarios.

Enhanced Security:
Our technology guarantees robust security by using client-side data
encryption prior to its transmission over the network. The files are
fragmented and then spread across several autonomously run storage
nodes. Using a standard 20/40 Reed-Solomon setup, a file is
distributed among 40 distinct disks in a worldwide network, making it
very difficult for any malicious individual to identify and compromise all
the essential components required to reconstruct the file. Even if a
malicious individual manages to identify and get access to all 40 disks,
they would still need the ability to decipher the 256-bit AES
encryption. However, only the end user has the capability to do this
decryption. The decentralized and encrypted technique effectively
establishes significant obstacles against illegal access.

Superior Availability:
Decentralized storage provides a clear benefit in terms of availability.
Contrary to centralised cloud providers, which might be susceptible to
widespread interruptions caused by natural catastrophes, power
failures, or assaults, every node in a decentralized network operates
autonomously. This autonomy greatly diminishes the probability that a
malfunction in one section of the network may impact other nodes. The
decentralized architecture guarantees the availability of data even if
many nodes fail, providing resilience against correlated failures that
may occur in a single data centre setting.

Improved Performance:
The SILO network utilises parallelism to improve performance in
applications that involve a high volume of reading. The system
minimises latency by deploying storage nodes in proximity to users at
the network edge, especially for users located distant from centralised
data centres. By using erasure coding, our system ensures that
download rates are not hindered by slower nodes. Instead, the network
adapts in real-time to maintain maximum performance. The SILO
network's versatility enables it to achieve accelerated download and

www.larissa.network | www.silos3.com

streaming rates, while avoiding the normally expensive nature of
content delivery networks (CDNs).

Cost-Effective Storage:
The cost of cloud storage from conventional providers has not
matched the exponential growth in global data output. This is partially
attributed to the substantial financial and operational costs necessary
to sustain centralised data centres. On the other hand, the SILO
network has an advantage since the storage node operators may profit
from the very cheap additional expenses. These operators usually use
their current gear that has idle capacity. These operators incur little
extra expenditures, enabling them to pass on cost reductions to end
consumers. Furthermore, the network's decentralized structure avoids
the concentration of market power, guaranteeing fair competition and
enabling the provision of storage solutions at a much lower price
compared to conventional cloud services.

The decentralized method not only creates economic incentives for all
players but also guarantees that storage services are efficient and
scalable, providing customers with an appealing alternative to standard
storage solutions.

